• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 18
  • 18
  • 18
  • 8
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MOLECULAR AND BIOCHEMICAL CHARACTERIZATION OF OLEATE- AND GLYCEROL-3-PHOSPHATE-REGULATED SIGNALING IN PLANTS

Mandal, Mihir Kumar 01 January 2012 (has links)
Oleic acid (18:1), a monounsaturated fatty acid (FA), is synthesized upon desaturation of stearic acid (18:0) and this reaction is catalyzed by the plastidal enzyme stearoyl-acyl carrier protein-desaturase (SACPD). A mutation in the SSI2/FAB2 encoded SACPD lowers 18:1 levels, which correlates with induction of various resistance (R) genes and increased resistance to pathogens. Genetic and molecular studies have identified several suppressors of ssi2 which restore altered defense signaling either by normalizing 18:1 levels or by affecting function(s) of a downstream component. Characterization of one such ssi2 suppressor mutant showed that it is required downstream of low 18:1-mediated constitutive signaling and partially restores altered defense signaling in the ssi2 mutant. Molecular and genetic studies showed that the second site mutation was in the Nitric Oxide Associated (NOA) 1 gene, which is thought to participate in NO biosynthesis. Consistent with this result, ssi2 plants accumulated high levels of NO and showed an altered transcriptional profile of NO-responsive genes. Interestingly, the partial defense phenotypes observed in ssi2 noa1 plants were completely restored by an additional mutation in either of the two nitrate reductases NIA1 or NIA2. This suggested that NOA1 and NIA proteins participated in NO biosynthesis in an additive manner. Biochemical studies showed that 18:1 physically bound NOA1, in turn leading to its degradation in a protease-dependent manner. In concurrence, overexpression of NOA1 did not promote NO-derived defense signaling in wild-type plants unless 18:1 levels were lowered. Subcellular localization showed that NOA1 and the 18:1-synthesizing SSI2 were present in close proximity within the nucleoids of chloroplasts. Indeed, pathogen- or low 18:1- induced accumulation of NO was primarily detected in the chloroplasts and their nucleoids. Together, these data suggested that 18:1 levels regulate NO synthesis and thereby NO-mediated retrograde signaling between the nucleoids and the nucleus. Since cellular pools of glycerol-3-phosphate (G3P) regulate 18:1 levels, I next analyzed the relationship between G3P and 18:1. Interestingly, unlike 18:1, an increased G3P pool was associated with enhanced systemic immunity in Arabidopsis. This was consistent with G3P-mediated transcriptional reprogramming in the distal tissues. To determine mechanism(s) underlying G3P-conferred systemic immunity, I analyzed the interaction between G3P and a lipid transfer protein (LTP), DIR1. In addition, I monitored localization of DIR1 in both Arabidopsis as well as tobacco. Contrary to its predicted apoplastic localization, DIR1 localized to endoplasmic reticulum and plasmodesmata. The symplastic localization of DIR1 was confirmed using several different assays, including co-localization with plasmodesmatal-localizing protein, plasmolysis and protoplast-based assays. Translocation assays showed that G3P increased DIR1 levels and translocated DIR1 to distal tissues. Together, these results showed that G3P and DIR1 are present in the symplast and their coordinated transport into distal tissues is likely essential for systemic immunity. In conclusion, this work showed that low 18:1-mediated signaling is mediated via NO, synthesis of which is likely initiated in the plastidal nucleoids. In addition, my work shows that G3P functions as an independent signal during systemic signaling by mediating translocation of the lipid transfer protein, DIR1.
2

GLYCEROLIPIDS AND THE PLANT CUTICLE CONTRIBUTE TO PLANT IMMUNITY

Gao, Qing-Ming 01 January 2012 (has links)
The conserved metabolites, oleic acid (18:1), a major monounsaturated fatty acid (FA), and glycerol-3-phosphate (G3P) are obligatory precursors of glycerolipid biosynthesis in plants. In Arabidopsis, the SSI2-encoded SACPD is the major isoform that contributes to 18:1 biosynthesis. Signaling induced upon reduction in oleic acid (18:1) levels not only upregulates salicylic acid (SA)-mediated responses but also inhibits jasmonic acid (JA)- inducible defenses. I examined the transcription profile of ssi2 plants and identified two transcription factors, WRKY50 and WRKY51. Although the ssi2 wrky50 and ssi2 wrky51 plants were constitutively upregulated in SA-derived signaling, they were restored in JAdependent defense signaling. Not only did these plants show JA-inducible PDF1.2 expression, but they were also restored for basal resistance to the necrotrophic pathogen, Botrytis cinerea. Overall, my results show that the WRKY50 and WRKY51 proteins mediate both SA- and low 18:1-dependent repression of JA signaling in Arabidopsis plants. My studies also show that cellular G3P levels are important for plant defense to necrotrophic pathogens. I showed that G3P levels are induced in Arabidopsis in response to the necrotrophic fungal pathogen B. cinerea. G3P-dependant induction of basal defense is not via the activities of other defense-related hormones such as SA, JA or the phytoalexin camalexin. Arabidopsis mutants unable to accumulate G3P (gly1, gli1) showed enhanced susceptibility to B. cinerea. Previous studies in our lab identified acyl-carrier protein 4 (ACP4), a component of FA and lipid biosynthesis, as an important regulator of plant systemic immunity. ACP4 mutant plants were defective in systemic acquired resistance (SAR) because they contained a defective cuticle. I further investigated the role of the plant cuticle in SAR by studying the involvement of long-chain acyl-CoA synthetases (LACS), a gene family involved in long-chain FA and cuticle biosynthesis, in SAR. In all, eight lacs mutants (lacs1, lacs2, lacs3, lacs4, lacs6, lacs7, lacs8, lacs9) were isolated and characterized. Six mutants were compromised in SAR. Together, my studies show that the various LACS isoforms contribute differentially to both cuticle formation and systemic immunity in Arabidopsis.
3

ROLE OF GLYCEROL-3-PHOSPHATE PERMEASES IN PLANT DEFENSE

Moreira Soares, Juliana 01 January 2018 (has links)
Systemic acquired resistance (SAR) is a type of plant defense mechanism that is induced after a localized infection and confers broad-spectrum immunity against related or unrelated pathogens. During SAR, a number of chemical signals and proteins generated at the site of primary infection travel to the uninfected tissues and are thought to alert the distal sites against secondary infections. Glycerol-3-phosphate (G3P) is one of the chemical signals that play an important role in SAR. G3P is synthesized in the cytosol and chloroplasts via the enzymatic activities of G3P Dehydrogenase (G3Pdh) or Glycerol Kinase (GK). Interestingly, a mutation in three of the five G3Pdh isoforms or GK impairs SAR by lowering the pathogen induced G3P pool. This suggests that total cellular pool of G3P is critical for SAR. To determine factors contributing to G3P flux between various subcellular compartments I analyzed the role of putative G3P transporters in G3P flux and SAR. The Arabidopsis genome encodes five isoforms of G3P Permeases (G3Pp) and these transmembrane proteins are predicted to localize to plasma membrane, chloroplast or mitochondria. At least two G3Pp isoforms (G3Pp1 and G3Pp3) were able to complement the Escherichia coli mutant impaired in the uptake of G3P into the cytoplasm. Characterization of Arabidopsis G3Pp mutants showed that a mutation in G3Pp2, G3Pp3 and G3Pp4 compromised SAR but not local resistance. Furthermore, this SAR defect could only be complemented by exogenous application of G3P. The G3Pp mutants accumulated wild-type-like levels of G3P suggesting that the subcellular compartmentalization of G3P might contribute to the induction of SAR.
4

Studies on the enzyme activity and gene expression of lipid and triacylglycerol biosynthesis of cobia (Rachycentron canadum).

Lee, Lin-han 30 July 2009 (has links)
The study was to investigate the changes in (1) triacylglycerol (TAG) contents and its relationship to (2) lipid synthesis- and metabolism-related enzyme activity and (3) their gene expression in cobia (Rachycentron canadum) during the fast growth period (from October 2006 to April 2007) in ventral muscle and liver in Hsiao-Lu-Chiao island in southwestern Taiwan. The crude lipid was 12% for fed diet, 30-40% for liver while 13% in February and 11% to 9% in other month for muscle. The TAG content of crude lipid was 36 % for fed diets, and from 22% (December) to 40% (February) for muscle, and from 63% (October to February) to 47% (March) for liver. Oil red-O (ORO) staining showed that TAG accumulated in muscle in February but in December in liver. Muscle TAG contents and enzyme activities and mRNA levels of GPDH and FAS increased in February. A decrease in GPDH enzyme activity and mRNA levels but an increase in PEPCK enzyme activity and mRNA levels indicate the increased supply of acetyl-CoA for fatty acid synthesis is in muscle. An increase in FATP2 mRNA levels suggest the influx of fatty acid also contributes to increased fatty acid accumulation in muscle.In liver, TAG and fatty acid contents decreased in March April but increased FAS and PEPCK enzyme activity and mRNA levels. It is possible that fatty acid synthesis is enhanced in March, but a fast transport to other organs results in a net decline in liver fatty acid contents and subsequently a decrease in TAG contents. FATP contents decreased in March-April mRNA, indicating that the influx of fatty acid in decreasing in liver in adult fish. GPDH and GAPDH were not related to lipid metabolism in liver. These data from enzyme activity and mRNA level, demonstrated that a potentially increase in acetyl-CoA via PEPCK contributes to fatty acid synthesis and GPDH-mediated synthesis of G-3-P provide the C skeleton for TAG synthesis.
5

GLYCEROL-3-PHOSPHATE IS A NOVEL REGULATOR OF BASAL AND INDUCED DEFENSE SIGNALING IN PLANTS

Chanda, Bidisha 01 January 2012 (has links)
Plants use several strategies to defend themselves against microbial pathogens. These include basal resistance, which is induced in response to pathogen encoded effector proteins, and resistance (R) protein-mediated resistance that is activated upon direct or indirect recognition of pathogen encoded avirulence protein(s). The activation of Rmediated signaling is often associated with generation of a signal, which, upon its translocation to the distal uninfected parts, confers broad-spectrum immunity against related or unrelated pathogens. This phenomenon known as systemic acquired resistance (SAR) is one of the well-established forms of induced defense response. However, the molecular mechanism underlying SAR remains largely unknown. Induction of plant defense is often associated with a fitness cost, likely because it involves reprogramming of the energy-providing metabolic pathways. Glycerol metabolism is one such pathway that feeds into primary metabolism, including lipid biosynthesis. In this study, I evaluated the role of glycerol-3-phosphate (G3P) in host-pathogen interaction. Inoculation with the hemibiotrophic fungal pathogen Colletotrichum higginsianum led to increased accumulation of G3P in wild-type plants. Mutants impaired in biosynthesis of G3P showed enhanced susceptibility, suggesting a correlation between G3P levels and basal defense. Conversely, increased biosynthesis of G3P correlated with enhanced resistance. The Arabidopsis genome encodes one copy of glycerol kinase (GK), which catalyzes phosphorylation of glycerol to G3P, and five copies of G3P dehydrogenase (G3Pdh), which catalyze reduction of dihydroxyacetone phosphate to G3P. Analysis of plants mutated in various G3Pdh's showed that plastidal lipid biosynthesis was only dependent on the GLY1 isoform but the pathogen induced G3P pool required the function of GLY1 and two other G3Pdh isoforms. Interestingly, compromised G3P biosynthesis in GK and G3Pdh mutants also compromised SAR, which was restored when G3P was provided exogenously. Detailed biochemical analysis showed that G3P was transported to distal tissues and that this process was dependent on a lipid transfer protein, DIR1. Together, these results show that G3P plays an important role in both basal- and induced-defense responses.
6

Physical inactivity induced dysregulation of skeletal muscle and adipose tissue metabolism

Kump, David S., January 2005 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2005. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Vita. "May 2005" Includes bibliographical references.
7

Indução da expressão da Glicerol-3-Fosfato desidrogenase em levedura /

Silva, Viviane Cristina. January 2009 (has links)
Resumo: O gene GPD2 de Saccharomyces cerevisiae, que codifica a enzima glicerol-3- fosfato desidrogenase (G3PDH; EC 1.1.1.8; NAD+: oxidoredutase) foi clonado na levedura Pichia pastoris para expressar extracelularmente a enzima em meio de cultura. Essa enzima apresenta aplicação prática em diversos sistemas acoplados para determinação quantitativa de triacilglicerol, glicerol, ácido fosfatídico e outros fosfolipidios também podendo ser usada para medir atividades enzimáticas em diversos tipos de amostras. Para que a atividade extracelular fosse suficiente em ensaios industriais e biológicos, um estudo de indução da expressão da enzima foi realizado no presente trabalho, que consistiu em escolher o clone que melhor secreta a enzima e estudar o meio de crescimento (BMGY), a densidade inicial celular (0,05 mg/mL), o meio de indução enzimática (BMMY), a natureza do tampão (tampão fosfato), o pH (6,0), o tempo de produção da proteína (4 dias), a concentração da enzima através de membrana filtrante (120 vezes), a melhor fonte de peptona (Acumédia), o estudo de pré-indução celular por estresse osmótico (atividade de 0,477 ± 0,0 U/mL em 24 horas com NaCl 0,35M). O processo de produção da G3PDH mostrou que a máxima produtividade enzimática (795 U/mL e atividade específica de 44,49 U/mg) e biomassa final de 17,75 mg/mL foi obtida com as seguintes condições experimentais: 48 horas de indução com meio BMMY, utilizando 1% de metanol, 1% de glicerol, densidade inicial celular de 0,05 mg/mL, pH 5,0 e sobrenadante concentrado 120 vezes em membrana filtrante. / Abstract: The GPD2 gene from Saccharomyces cerevisiae, which encodes the enzyme glycerol-3-phosphate dehydrogenase (G3PDH, EC 1.1.1.8, NAD +: oxidoredutase) was cloned in the yeast Pichia pastoris to express the enzyme extracellularly in the culture medium. The enzyme G3PDH has practical application in various systems coupled to quantitative determination of triacylglycerol, glycerol, phosphatidic acid and other phospholipids. It can also be used to measure the enzymatic activities in diverse types of samples. For the application of the enzyme extracellular in industrial and biological tests, a study of induction of expression of the enzyme was accomplished in the present work, that consisted of to choose of clone that more expressing the enzyme, the growth medium (BMGY), the cellular initial density (0.05 mg/mL), the medium of enzymatic induction (BMMY), the buffer nature (phosphate potassium), pH (6.0), the time of production of the protein (4 days), the concentration of the protein (120-fold), the peptone source (Acumédia), the study of pre-induction cellular for osmotic stress (activity of 0.477 ± 0.0 U/mL in 24 hours with NaCl 0.35M). The study of the variable determinative in the process of production of the G3PDH it showed that the maximum enzymatic productivity (0.795 U/mL and 44.49 U/mg of specific activity) and final biomass of 17.75 mg/mL was obtained with the following experimental conditions: 48 hours of induction with medium BMMY, using 1% methanol, 1% glycerol, cellular initial density of 0.05mg/mL, pH 5.0 and the supernatant concentrated 120-fold in filter menbrane. / Orientador: Edwil Aparecida de Lucca Gattás / Coorientador: Maristela de Freitas Sanches Peres / Banca: Edwil Aparecida de Lucca Gattás / Banca: José Roberto Ernandes / Banca: Luiz Henrique Souza Guimarães / Mestre
8

Assessing the Role of Glyceroneogenesis in Triglyceride Metabolism

Nye, Colleen Klocek 18 July 2008 (has links)
No description available.
9

Purification and Characterization of glpX-Encoded Fructose 1,6-Bisphosphatase, a New Enzyme of the Glycerol 3-Phosphate Regulon of Escherichia coli

Donahue, Janet Lee 01 May 2000 (has links)
In Escherichia coli, the utilization of glycerol and sn-glycerol 3-phosphate is mediated by gene products of the glp regulon. The regulon encompasses five operons, including the glpFKX operon. Although glpF and glpK encode glycerol diffusion facilitator and glycerol kinase,respectively, the function of glpX was unknown. In the present work, we show that glpX encodes a fructose 1,6-bisphosphatase (FBPase), which catalyzes the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate and phosphate. The purified FBPase was dimeric, dependent on Mn2+ for activity and exhibited an apparent Km of 35 μM for fructose 1,6-bisphosphate. The enzyme was inhibited by ADP, ATP and phosphate and activated by PEP. The attributes of the glpX-encoded FBPase were different from those of the previously characterized E. coli FBPase encoded by fbp. Mutants deleted in fbp (Δfbp) display a growthnegative phenotype on gluconeogenic carbon sources such as glycerol, indicating the inability of chromosomal glpX+ to complement Δfbp. However, a Δfbp mutation was complemented by overexpression of glpX+. In contrast, a glpX mutant exhibited a growth-positive phenotype on glycerol, glucose or fructose media. Surprisingly, a double mutant strain glpX pfkA (6-phosphofructokinase I) was more inhibited in growth on glucose and glycerol media than the pfkA parent. Carbohydrate metabolism in the pfkA background may be affected by the glpXmediated change in fructose 6-phosphate/fructose 1,6-bisphosphate levels. FBPase activities of soluble proteins separated by non-denaturing PAGE were visualized, showing a novel (third) FBPase, perhaps encoded by the glpX homolog, yggF. / Master of Science
10

Molecular and Biochemical Signaling Underlying Arabidopsis-Bacterial/Virus/Fungal Interactions

El-Shetehy, Mohamed H. 01 January 2016 (has links)
Systemic acquired resistance (SAR) is a form of inducible defense response triggered upon localized infection that confers broad-spectrum disease resistance against secondary infections. Several factors are known to regulate SAR and these include phenolic phytohormone salicylic acid (SA), phosphorylated sugar glycerol-3-phosphate (G3P), and dicarboxylic acid azelaic acid (AzA). This study evaluated a role for free radicals nitric oxide (NO) and reactive oxygen species (ROS) in SAR. Normal accumulation of both NO and ROS was required for normal SAR and mutations preventing NO/ROS accumulation and/or biosynthesis compromised SAR. A role for NO and ROS was further established using pharmacological approaches. Notably, both NO and ROS conferred SAR in a concentration dependent manner. This was further established using genetic mutants that accumulated high levels of NO. NO/ROS acted upstream of G3P and in parallel to SA. Collectively, these results suggest that NO and ROS are essential components of the SAR pathway.

Page generated in 0.0434 seconds