• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 14
  • 14
  • 13
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MATHEMATICAL MODEL OF ETHANOL METABOLISM IN LIVER

PANDE, PARAG M. January 2007 (has links)
No description available.
2

A study of fructose-1, 6-diphosphatase: some properties including ascorbate inhibition.

李蘊盈, Lam, Wan-ying. January 1972 (has links)
published_or_final_version / Biochemistry / Master / Master of Philosophy
3

Cloning, Expression, Purification, and Characterization of the Fructose-1,6-Bisphosphate Aldolase of Deinococcus radiodurans

Chen, Kuan-Wen 22 September 2003 (has links)
The addition of Mn(II) to an early stationary-phase Deinococcus radiodurans RI culture could induce a new round of cell division (MnCD effect). The addition of Mn(II) could also stimulate the utilization of glucose and fructose in this bacterium. Class II fructose-1,6-bisphosphate aldolase (FBA) is an Mn-dependent key enzyme in pentose phosphate pathway. Therefore, in this research, we focused on the studies of the fba gene. Base on the gene sequence, FBA protein was composed of 306 amino acids, (M.W., 32.4 kDa¡F pI, 5.4). The expected PCR product size of the fba gene is 9.3 kbp. We had amplified the fba gene by using both Taq DNA polymerase and pfu turbo DNA polymerase. The sequence of the pfu turbo DNA polymerase products showed a higher homology with the fba gene than those of using Taq DNA polymerase. These amplified fba gene was cloned into three expression vectors, pGEX-4T-2, pQE30, and pET28a, and then further expressed in E. coli BL21(DE3)RIL and JM109. The recombinant GST-FBA protein could be overproduced in pTDA2/BL21(DE3)RIL. However, the expressed insoluble protein accumulated as inclusion bodies in the cells and exhibited no enzyme activity. After partial purification, and processing by thrombin protease cleavage, urea treatment, and the addition of Mn(II), this enzyme still showed no activity. The recombinant pEDA2/BL21(DE3)RIL strain cells grew in 18¢J and induced by 0.1mM IPTG could produced a soluble form His-Thrombin-T7-FBA protein which performed a 50X higher activities than those cells grew in 30¢J. This result indicated that decreasing the indicatioin temperature could improve the protein solubility and activity.
4

A study of fructose-1, 6-diphosphatase : some properties including ascorbate inhibition.

Lam, Wan-ying. January 1972 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1972. / Typewritten.
5

Methods for improving neurological recovery after hypothermic circulatory arrest:fructose-1,6-bisphosphate and hypertonic saline dextran in a surviving porcine model

Kaakinen, T. (Timo) 29 November 2005 (has links)
Abstract During surgery of the aortic arch and pediatric heart surgery, the blood flow to the brain has to be interrupted at times to allow a bloodless operation field and adequate conditions for surgical repair. During this no-flow period the brain is exposed to a high risk of ischaemic injury, as it will become irreversibly damaged after 5 minutes of circulatory arrest at 37°C. Additional time can be gained by cooling the patient with an extracorporeal heart-lung machine, as hypothermia reduces the cerebral metabolic rate and allows longer safe periods of circulatory standstill. This method of cerebral protection, called hypothermic circulatory arrest (HCA), is widely used in clinical practice. Thus the brain becomes susceptible to ischaemic injury after 30 minutes of HCA at 15°C. Lower temperatures than this are not practicable, however, as they require longer periods of cardiopulmonary bypass, which may further aggravate cerebral injury. To ensure a better outcome for patients undergoing these operations, additional ways of protecting the brain are required. The present work focuses on neuroprotective biochemical and fluid therapy methods for use during HCA, employing a surviving porcine model. Fructose-1,6-bisphosphate (FDP), a high-energy intermediate of glycolysis, was examined for potential neuroprotective properties in two cerebral injury settings associated with HCA. First, FDP was administered before and after a 75-minute period of HCA at a brain temperature of 18°C. This led to better survival, neurological recovery and brain histopathological findings and had supportive effects on brain metabolism (I). Second, a 25-minute period of HCA along with an iatrogenic embolic load produced by microsphere injection was used to generate a massive ischaemic injury to the brain. In this setting FDP did not affect the neurological outcome but had a clear supportive impact on cerebral metabolism (II). In addition, cerebral histopathological samples taken during the first study were analysed by electron microscopy, which revealed significant preservation of the ultrastructure in the FDP-treated animals (III). Hypertonic saline dextran (HSD) is a novel fluid therapy method which has been shown to enhance the outcome after hypovolaemic shock with or without head injury and is potentially very effective in reducing ischaemia-reperfusion injury. Its administration led to a decrease in intracranial pressure, improved brain metabolism, faster and better recovery and less histopathologically observable morphological damage (IV). The findings indicate that both FDP and HSD have significant neuroprotective properties and should be assessed in humans as well.
6

Adjuncts to improve neurological outcome following hypothermic circulatory arrest:an experimental study using a chronic porcine model

Romsi, P. (Pekka) 24 January 2003 (has links)
Abstract Interruption of cerebral blood flow during hypothermic circulatory arrest (HCA) predisposes neurons to glutamate excitotoxicity. Reperfusion is followed by leukocyte infiltration, which results in an inflammatory reaction in the brain tissue. In the first study, the presynaptic glutamate release inhibitor lamotrigine (L) and the leukocyte-depleting filter (LF) were studied to determine if their combination could mitigate brain injury after HCA (I). The aim of the second study was to evaluate the possible neuroprotective effect of a 14-hour period of mild (32°C) hypothermia after HCA (II). Recent experimental research has demonstrated the neuroprotective properties of erythropoietin (EPO) and fructose-1,6-bisphosphate (FDP), whose effects during and after HCA were evaluated in the third and the fourth studies (III, IV). A chronic porcine model was used. The animals were randomly assigned to the study groups as follows: 8 animals in the L+LF group, 8 in the L group, and 8 in the control group (I); 10 animals in the hypothermia group and 10 in the normothermia group (II); 10 animals in the EPO group and 10 in the control group (III), and 12 animals in the FDP group and 12 in the control group (IV). Monitoring of hemodynamics, metabolism, temperature, electroencephalogram (EEG), brain microdialysis, intracranial pressure (II-IV), and brain tissue oxygen (II-IV) was carried out. A daily behavioral assessment was performed until death or until elective sacrifice on the seventh postoperative day, after which the brain was prepared for a histopathologic examination. The results of these studies indicate that lamotrigine has a neuroprotective effect during HCA. This is observed in terms of EEG burst recovery, behavioral and histopathologic outcome, and brain microdialytic findings. The combined use of lamotrigine and leukocyte filtration may further improve survival. A 14-hour period of mild hypothermia after HCA is associated with a poor outcome. However, it may preserve its efficacy when used for no longer than 4 hours. Administration of EPO before HCA proved ineffective in reducing mortality or brain histopathologic injury. Findings from brain microdialysis, brain tissue oxygen tension, and neuronal apoptosis, however, suggest that the drug has neuroprotective properties. Administration of FDP before and after HCA is associated with better survival, behavioral outcome, and brain histopathologic scores. The metabolic and brain microdialytic findings also suggest that this drug has supportive effects on myocardial and brain metabolism.
7

Purification and Characterization of glpX-Encoded Fructose 1,6-Bisphosphatase, a New Enzyme of the Glycerol 3-Phosphate Regulon of Escherichia coli

Donahue, Janet Lee 01 May 2000 (has links)
In Escherichia coli, the utilization of glycerol and sn-glycerol 3-phosphate is mediated by gene products of the glp regulon. The regulon encompasses five operons, including the glpFKX operon. Although glpF and glpK encode glycerol diffusion facilitator and glycerol kinase,respectively, the function of glpX was unknown. In the present work, we show that glpX encodes a fructose 1,6-bisphosphatase (FBPase), which catalyzes the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate and phosphate. The purified FBPase was dimeric, dependent on Mn2+ for activity and exhibited an apparent Km of 35 μM for fructose 1,6-bisphosphate. The enzyme was inhibited by ADP, ATP and phosphate and activated by PEP. The attributes of the glpX-encoded FBPase were different from those of the previously characterized E. coli FBPase encoded by fbp. Mutants deleted in fbp (Δfbp) display a growthnegative phenotype on gluconeogenic carbon sources such as glycerol, indicating the inability of chromosomal glpX+ to complement Δfbp. However, a Δfbp mutation was complemented by overexpression of glpX+. In contrast, a glpX mutant exhibited a growth-positive phenotype on glycerol, glucose or fructose media. Surprisingly, a double mutant strain glpX pfkA (6-phosphofructokinase I) was more inhibited in growth on glucose and glycerol media than the pfkA parent. Carbohydrate metabolism in the pfkA background may be affected by the glpXmediated change in fructose 6-phosphate/fructose 1,6-bisphosphate levels. FBPase activities of soluble proteins separated by non-denaturing PAGE were visualized, showing a novel (third) FBPase, perhaps encoded by the glpX homolog, yggF. / Master of Science
8

Regulation of Fructose 1,6-bisphosphatase II (GlpX) Gene Expression in Escherichia coli

Col, Bekir 22 October 2004 (has links)
The glpX gene of Escherichia coli encodes fructose 1,6-bisphosphatase II (FBPase II), an enzyme that would appear to be redundant with FBPase I, encoded by fbp. However, glpX mutants have no apparent phenotype, while fbp mutants are unable to grow on gluconeogenic substrates as sole carbon sources, suggesting that GlpX function is insufficient for growth of fbp mutants under these conditions. To gain insight into the physiological functions of the FBPases, regulation of glpX expression was investigated. It was found that glpX is transcribed as part of a complex glpFKX operon containing promoters upstream of glpF, glpK and glpX (PglpF, PglpK, PglpX, respectively). Transcription start sites of PglpX were found at -24 and -41 relative to the ATG translation initiation site using primer extension analysis. Unlike PglpF, these newly found promoters were not subject to regulation by GlpR or cAMP-CRP. Cra (Catabolite Repressor/Activator) positively regulated expression from PglpK and PglpX by increasing transcription approximately 2 fold. Western analysis using GlpX polyclonal antibodies revealed that GlpX levels were higher in cultures grown on glycerol compared with levels in maltose- or glucose-grown cultures (glycerol>maltose>glucose). Various strains and growth conditions were used to show that GlpX levels are regulated by GlpR, suggesting that PglpF can give rise to expression of glpX. GlpX protein was present in a strain containing a polar insertion in glpK, indicating that PglpX can also give rise to expression of glpX. Strains deficient in FBPase I or CsrA (carbon starvation regulator) did not reveal any difference in GlpX levels with respect to the wild type. All of these data indicate that glpX expression is achieved by its own promoter as well as the operon promoter, PglpF. Finally, the results show that the delta-fbp phenotype is not due to the absence of GlpX. / Ph. D.
9

Enhanced methylglyoxal formation in cystathionine γ-lyase knockout mice

Untereiner, Ashley Anne 24 June 2011
<p>Methylglyoxal (MG) is a reactive glucose metabolite and a known causative factor for hypertension and diabetes. Hydrogen sulfide (H<sub>2</sub>S), on the other hand, is a gasotransmitter with multifaceted physiological functions, including anti-oxidant and vasodilatory properties. The present study demonstrates that MG and H<sub>2</sub>S can interact with and modulate each other's functions. Upon <i>in vitro</i> incubations, we found that MG and H<sub>2</sub>S can directly interact to form three possible MG-H<sub>2</sub>S adducts. Furthermore, the endogenous production level of MG or H<sub>2</sub>S was significantly reduced in a concentration-dependent manner in rat vascular smooth muscle cells (A-10 cells) treated with NaHS, a H<sub>2</sub>S donor, or MG, respectively. Indeed, MG-treated A-10 cells exhibited a concentration-dependent down-regulation of the protein and activity level of cystathionine &gamma;-lyase (CSE), the main H<sub>2</sub>S-generating enzyme in the vasculature. Moreover, H<sub>2</sub>S can induce the inhibition of MG-generated ROS production in a concentration-dependent manner in A-10 cells. In 6-22 week-old CSE knockout male mice (CSE<sup>-/-</sup>), mice with lower levels of vascular H<sub>2</sub>S, we observed a significant elevation in MG levels in both plasma and renal extracts. Renal triosephosphates were also significantly increased in the 6-22 week-old CSE<sup>-/-</sup> mice. To identify the source of the elevated renal MG levels, we found that the activity of fructose-1,6-bisphosphatase (FBPase), the rate-limiting enzyme in gluconeogenesis, was significantly down-regulated, along with lower levels of its product (fructose-6-phosphate) and higher levels of its substrate (fructose-1,6-bisphosphate) in the kidney of 6-22 week-old CSE<sup>-/-</sup> mice. We have also observed lower levels of the gluconeogenic regulator, peroxisome proliferator-activated receptor-&gamma; coactivator (PGC)-1&alpha;, and its down-stream targets, FBPase-1 and -2, phosphoenolpyruvate carboxykinase (PEPCK), and estrogen-related receptor (ERR)&alpha; mRNA expression levels in renal extracts from 6-22 week-old CSE<sup>-/-</sup> mice. Likewise, FBPase-1 and -2 mRNA levels were also significantly down-regulated in aorta tissues from 14-16 week-old CSE<sup>-/-</sup> mice. Administration of 30 and 50 &#x00B5;M NaHS induced a significant increase in FBPase-1 and PGC-1&alpha; in rat A-10 cells. We have also observed a significant up-regulation of PEPCK and ERR&alpha; mRNA expression levels in 50 &#x00B5;M NaHS-treated A-10 cells, further confirming the involvement of H<sub>2</sub>S in regulating the rate of gluconeogenesis and MG formation. Overall, this unique study demonstrates the existence of a negative correlation between MG and H<sub>2</sub>S in the vasculature. Further elucidation of this cross-talk phenomenon between MG and H<sub>2</sub>S could lead to more elaborate and effective therapeutic regimens to combat metabolic syndrome and its related health complications.</p>
10

Enhanced methylglyoxal formation in cystathionine &gamma;-lyase knockout mice

Untereiner, Ashley Anne 24 June 2011 (has links)
<p>Methylglyoxal (MG) is a reactive glucose metabolite and a known causative factor for hypertension and diabetes. Hydrogen sulfide (H<sub>2</sub>S), on the other hand, is a gasotransmitter with multifaceted physiological functions, including anti-oxidant and vasodilatory properties. The present study demonstrates that MG and H<sub>2</sub>S can interact with and modulate each other's functions. Upon <i>in vitro</i> incubations, we found that MG and H<sub>2</sub>S can directly interact to form three possible MG-H<sub>2</sub>S adducts. Furthermore, the endogenous production level of MG or H<sub>2</sub>S was significantly reduced in a concentration-dependent manner in rat vascular smooth muscle cells (A-10 cells) treated with NaHS, a H<sub>2</sub>S donor, or MG, respectively. Indeed, MG-treated A-10 cells exhibited a concentration-dependent down-regulation of the protein and activity level of cystathionine &gamma;-lyase (CSE), the main H<sub>2</sub>S-generating enzyme in the vasculature. Moreover, H<sub>2</sub>S can induce the inhibition of MG-generated ROS production in a concentration-dependent manner in A-10 cells. In 6-22 week-old CSE knockout male mice (CSE<sup>-/-</sup>), mice with lower levels of vascular H<sub>2</sub>S, we observed a significant elevation in MG levels in both plasma and renal extracts. Renal triosephosphates were also significantly increased in the 6-22 week-old CSE<sup>-/-</sup> mice. To identify the source of the elevated renal MG levels, we found that the activity of fructose-1,6-bisphosphatase (FBPase), the rate-limiting enzyme in gluconeogenesis, was significantly down-regulated, along with lower levels of its product (fructose-6-phosphate) and higher levels of its substrate (fructose-1,6-bisphosphate) in the kidney of 6-22 week-old CSE<sup>-/-</sup> mice. We have also observed lower levels of the gluconeogenic regulator, peroxisome proliferator-activated receptor-&gamma; coactivator (PGC)-1&alpha;, and its down-stream targets, FBPase-1 and -2, phosphoenolpyruvate carboxykinase (PEPCK), and estrogen-related receptor (ERR)&alpha; mRNA expression levels in renal extracts from 6-22 week-old CSE<sup>-/-</sup> mice. Likewise, FBPase-1 and -2 mRNA levels were also significantly down-regulated in aorta tissues from 14-16 week-old CSE<sup>-/-</sup> mice. Administration of 30 and 50 &#x00B5;M NaHS induced a significant increase in FBPase-1 and PGC-1&alpha; in rat A-10 cells. We have also observed a significant up-regulation of PEPCK and ERR&alpha; mRNA expression levels in 50 &#x00B5;M NaHS-treated A-10 cells, further confirming the involvement of H<sub>2</sub>S in regulating the rate of gluconeogenesis and MG formation. Overall, this unique study demonstrates the existence of a negative correlation between MG and H<sub>2</sub>S in the vasculature. Further elucidation of this cross-talk phenomenon between MG and H<sub>2</sub>S could lead to more elaborate and effective therapeutic regimens to combat metabolic syndrome and its related health complications.</p>

Page generated in 0.0731 seconds