• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 24
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Defence capabilities of human intestinal epithelial cells

Fahlgren, Anna January 2003 (has links)
The epithelial cells lining the intestinal mucosa separate the underlying tissue from components of the intestinal lumen. Innate immunity mediated by intestinal epithelial cells (IECs) provides rapid protective functions against microorganisms. Innate immunity also participates in orchestrating adaptive immunity. Key components in innate defence are defensins. To study the production of defensins and how it is affected by intestinal inflammation IECs were isolated from the small and large intestines of patients suffering from ulcerative colitis (UC), Crohn´s disease (MbC), celiac disease (CD), and from controls, and analyzed by quantitative RT-PCR (qRT-PCR) and immunoflow cytometry. Defensin expressing cells were also studied by in situ hybridization and immunohistochemistry. Normally, only small intestinal Paneth cells express human α-defensin 5 (HD-5) and HD-6. In UC colon IECs, HD-5, HD-6, and lysozyme mRNAs were expressed at high levels. In Crohn´s colitis colon the levels of HD-5 and lysozyme mRNAs were also increased although not to the same extent as in UC. No increase was detected in MbC with ileal localization. Metaplastic Paneth cell differentiation in UC colon was primarily responsible for the expression of the antimicrobial components. Human β-defensin 1 (hBD-1) mRNA was more abundant in large than in small intestine of controls, and remained unchanged in UC and MbC. hBD-2 mRNA was barely detectable in normal intestine and was induced in UC IECs but not in MbC IECs. mRNAs for the recently discovered hBD-3 and hBD-4, were detected in IECs from both small and large intestine. Both hBD-3 and hBD-4 mRNA were significantly increased in IECs of UC patients but not of MbC patients. Bacteria and IL-1β induced hBD-2 but not hBD-1 mRNA in colon carcinoma cell lines. IFN-γ, but not TNF-α or IL-1β, augmented hBD-3 expression in these cells, while none of the agents induced hBD-4. High antimicrobial activity of IECs in UC may be a consequence of changes in the epithelial lining, which permit the adherence of microorganisms. Unexpectedly, in situ hybridization revealed expression of hBD-3 and hBD-4 mRNAs by numerous lamina propria cells in colonic tissue from UC patients. These cells were identified as plasma cells (CD138+). hBD-3 and hBD-4 mRNAs were also demonstrated in the plasmacytoma cell line U266. This is the first demonstration of defensins in plasma cells. The four prominent constituents of the intestinal glycocalyx, carcinoembryonic antigen (CEA), CEA cell adhesion molecule 1 (CEACAM1), CEACAM6 and CEACAM7 all seem to play a critical role in innate defence of the intestinal mucosa by trapping and expelling microorganisms at the epithelial surface. The inducibility of these molecules in colonic epithelial cell lines was analyzed by qRT-PCR, immunoflow cytometry, and immunoelectron microscopy. IFN-g but not bacteria, LPS, TNF-α, or IL-1β modified the expression of CEA, CEACAM1 and CEACAM6. None of these agents modified CEACAM7 expression. IFN-γ was shown to have two effects: a direct effect on CEACAM1 transcription, and promotion of cell differentiation resulting in increased CEA and CEACAM6 and decreased CEACAM7 expression. Scanning electron microscopy of jejunal biopsies from children with CD revealed the presence of rod shaped bacteria in ~40% of patients with active CD, but only in 2% of controls. 19% of treated CD patients still had adhering bacteria. Presence of bacteria is not due to lack of antimicrobial factors. In fact, HD-5, HD-6, and lysozyme mRNA levels were significantly increased in IECs of patients with active CD. hBD-1 and hBD-2 were unchanged. Lack of induction of hBD-2 may reflect disturbed signalling in IECs of CD patients. Analysis of CEA and CEACAM1 mRNA/protein expression showed no differences between CD patients and controls. Analysis of the mucins MUC2 and MUC3 revealed significantly increased MUC2 levels in active disease and unchanged MUC3. Immunohistochemistry demonstrated goblet cell metaplasia as well as staining of the apical portion of absorptive cells. Glycosylation status of proteins was studied by lectin histochemistry. Goblet cells in the mucosa of CD patients were stained by the lectin UEAI. This was not seen in controls. The lectin PNA stained the glycocalyx of controls but not that of CD patients. Thus, unique carbohydrate structures of the glycocalyx/mucous layer are likely discriminating features of CD patients and may allow bacterial binding. We conclude that the intestinal epithelium is heavily involved in the innate defence of the mucosa and that its reactive pattern is affected by intestinal inflammation. Keywords: human intestinal mucosa; epithelial cells; innate immunity; defensin; ulcerative colitis; Crohn´s disease; celiac disease; glycoαcalyx; mucin
22

Odvrhování glykokalyxu u cerkárií ptačích schistosom / Glycocalyx shedding by cercariae of bird schistosomes

Chaloupecká, Jana January 2012 (has links)
Trichobilharzia spp. are avian schistosomes related to medically important human parasites of the genus Schistosoma. Penetrating cercariae are well known as causative agent of cercarial dermatitis in humans. Cercariae actively penetrate the skin of definitive hosts and transform into schistosomula. This process is preceded by cercarial tail detachment and includes emptying of penetration glands and extensive surface changes. One of these changes is the loss of highly immunogenic glycocalyx which represents a protective coat in the aquatic environment. The glycocalyx has specific composition of saccharide molecules which are bound to lipids or proteins on the membrane of cercarial tegument. There is only limited information about the mechanism of shedding. Hypotheses based on indirect evidences suggest that peptidases or (phospho)lipases from penetration glands could be involved. This work describes the changes in surface glycosylation during transformation of cercariae into schistosomula by fluorescently labelled lectins and monoclonal antibodies against Lewis X antigen. Lectins UEA-I, LTA and PNA have been chosen as markers of transformation of T. regenti. Further, our experiments have been focused on shedding of cercarial glycocalyx. During in vitro induction of penetration gland emptying and...
23

Fluorescent Visualization of Cellular Proton Fluxes

Zhang, Lejie 06 September 2018 (has links)
Proton fluxes through plasma membranes are essential for regulating intracellular and extracellular pH and mediating co-transport of metabolites and ions. Although conventional electrical measurements are highly sensitive and precise for proton current detection, they provide limited specificity and spatial information. My thesis focuses on developing optical approaches to visualize proton fluxes from ion channels and transporters. It has been demonstrated that channel-mediated acid extrusion causes proton depletion at the inner surface of the plasma membrane. Yet, proton dynamics at the extracellular microenvironment are still unclear. In Chapter II, we developed an optical approach to directly measure pH change in this nanodomain by covalently attaching small-molecule, fluorescent proton sensors to the cell’s glycocalyx using glyco-engineering and copper free ‘click’ chemistry. The extracellularly facing sensors enable real-time detection of proton accumulation and depletion at the plasma membrane, providing an indirect readout of channel and transporter activity that correlated with whole-cell proton current. Moreover, the proton wavefront emanating from one cell was readily visible as it crossed over nearby cells. The transport of monocarboxylates, such as lactate and pyruvate is critical for energy metabolism and is mainly mediated by proton-coupled monocarboxylate transporters (MCT1-MCT4). Although pH electrodes and intracellular fluorescent pH sensors have been widely used for measuring the transport of proton-coupled MCTs, they are unable to monitor the subcellular activities and may underestimate the transport rate due to cell’s volume and intracellular buffering. In Chapter III, we used the Chapter II approach to visualize proton-coupled transport by MCT1-transfected HEK293T cells and observed proton depletion followed by a recovery upon extracellular perfusion of L-lactate or pyruvate. In addition, we identified a putative MCT, CG11665/Hrm that is essential for autophagy during cell death in Drosophila. The results demonstrate that Hrm is a bona fide proton-coupled monocarboxylate transporter that transports pyruvate faster than lactate. Although the approach developed in Chapter II enables visualization of proton fluxes from ion channels and transporters, it’s not applicable in some cell types which cannot incorporate unnatural sialic acid precursors into their glycocalyx, such as INS-1 cells and cardiomyocytes. To address this, in Chapter IV we developed a pH-sensitive, fluorescent WGA conjugate, WGA-pHRho that binds to endogenous glycocalyx. Compared to the results in Chapter II and III, cell surface-attached WGA-pHRho has similar fluorescent signals in response to proton fluxes from proton channel Hv1, omega mutant Shaker-IR R362H and MCT1. With WGA-pHRho, we were able to label the plasma membrane of INS-cells and cardiomyocytes and visualized the transport activity of MCT1 in these cells. Taken together, these findings provide news insights into proton dynamics at the extracellular environment and provide new optical tools to visualize proton fluxes from ion channels and transporters. Moreover, the modularity of the approaches makes them adaptable to study any transport events at the plasma membrane in cells, tissues, and organisms.
24

In vitro kultivace motolice Trichobilharzia regenti / In vitro cultivation of the trematode species Trichobilharzia regenti

Vrbová, Kristýna January 2017 (has links)
The class Trematoda includes many pathogenic representatives. Main subject of this thesis, avian schistosome Trichobilharzia regenti, is a close relative to the important human pathogen Schistosoma mansoni (family Schistosomatidae). In vitro cultivation of trematodes enables closer understanding of their biology and parasite- host interactions; however, no trematode species has been successfully kept in vitro from the egg stage to the adults producing eggs. Many studies are focused on the problematic of S. mansoni cultivation, but data concerning T. regenti cultivation remain scarce. Only the ability of T. regenti cercariae to transform into schistosomula in vitro was documented, with following survival in a culture medium for a few days. Comparison of eight transformation methods was performed with T. regenti cercariae. Based on the number of tailless cercarial bodies obtained, five transformation methods were selected for further evaluation of the early schistosomula characteristics (glycocalyx shedding, penetration glands emptying and survival in vitro). It was observed that the largest quantity of cercarial bodies can be obtained by using a syringe needle or the BeadBeater cell disrupter. The largest quantity of schistosomula meeting the criteria of early schistosomulum was recorded after...

Page generated in 0.0437 seconds