1 |
Materials engineering of semiconductor quantum dots for biosensing applicationsChern, Margaret 04 June 2019 (has links)
The brightness and photostability of semiconductor quantum dots (QDs) has prompted the exploration of their use in a wide variety of fields. Several examples of QD-based biosensors have been reported but none have actually replaced their preexisting technologies. This work reveals the barriers hindering widespread use of QD based biosensors and examines how QDs can be engineered for improved utility in bioassay designs.
The first portion of this project aims to improve Förster Resonance Energy Transfer (FRET) that use QDs as both the donor and acceptor. FRET-based sensors often use fluorescent dyes (FD) or proteins (FPs), but their photo- and chemical instability can be problematic. Contemporary QD-QD FRET systems suffer from unacceptably high background signal due to direct acceptor excitation. Materials engineering is used to create QD donors that are brighter than their QD acceptors to mitigate this effect. First, CdSe/xCdS/xZnS QDs of increasing shell thickness were synthesized and tested in a QD-fluorescent dye system to elucidate the effect of increased donor size on the performance of a FRET sensor. The optimal donors were medium-sized and 8 times brighter than commercially available QDs while retaining ~60% FRET efficiency. When used in a sensor, changes in sensor brightness were visible by eye. Moving towards QD-QD systems, a pH-based aggregation assay was used to test how QD heterostructures comprised of different semiconductor materials perform as FRET donors or acceptors. The fundamental principles uncovered are used to improve contemporary QD-QD FRET sensing and show that sensors can be designed to use color change as a visible, easy-to-decipher readout.
Color change-based sensor output is further explored in an allosteric transcription factor-based small-molecule sensor that employs QDs as the sole fluorescent label. A highly modular design is presented that achieves a nanomolar concentration visual limit of detection. The ease of use, and fast, instrument-free readout of the sensor shows promise for its development into a fully integrated point-of-care device, endorsing the value of further developing QD-based in vitro biosensors for clinical or commercial translation. / 2020-06-04T00:00:00Z
|
2 |
Design, Synthesis and Characterization of Zinc(II)-Selective Ratiometric Fluorescent SensorsWu, Yonggang 14 November 2007 (has links)
Zinc is an important micronutrient but the biological function of its labile form is poorly understood. Zinc selective fluorescence sensors, recognized as the major tool to gain information about the role of zinc in living systems, have been attracting more and more interest.
The most promising solution currently being studied comes in the form of ratiometric sensors. Unlike sensors based on the switch-on mechanism, ratiometric sensors determine the free metal concentration directly from the ratio of the emission intensities at two wavelengths. The major restriction on the design of this type of sensor is from the necessity for a spectral-shift upon binding metal ions. To develop novel ratiometric sensors, we have developed designs based on excited-state intramolecular proton transfer (ESIPT).
In the absence of ZnII at neutral pH, the 2-(2 -sulfonamidophenyl)benzimidazole family undergoes ESIPT to yield a highly Stokes-shifted emission from the proton-transfer tautomer. Coordination of ZnII inhibits the ESIPT process and yields a significant hypsochromic shift of the fluorescence emission maximum. By implementing structural modifications, we were able to gauge free ZnII concentrations in the millimolar to picomolar range.
To tune the peak excitation towards lower energy, a property that is of particular importance in the light of biological applications, we modified the platform molecule with extended pi-conjugation and by substituent engineering. The position of the modification and the nature of the substituents strongly influenced the photophysical properties of the investigated derivatives. Several fluorophores revealed emission ratiometric properties with a large dynamic range combined with a peak absorption beyond 350 nm, rendering these probes promising candidates for applications.
To further understand the origin of the substituent effect, we studied five derivatives for the solvatochromic shift analysis and quantum chemical studies. The results showed that the negative solvatochromic shift behavior was most pronounced in protic solvents presumably due to specific hydrogen-bonding interactions. The extrapolated gas-phase emission energies correlated qualitatively with the trends in Stokes shifts, suggesting that solute-solvent interactions do not play a significant role in explaining the divergent emission energy shifts. Detailed quantum chemical calculations not only confirmed the moderately polarized nature of the ESIPT tautomers but also provided a rationale for the observed emission shifts based on the differential change in the HOMO and LUMO energies.
This study revealed the great potential of 2-(2 -arylsulfonamidophenyl)- benzimidazoles, such as tunable peak absorption and emission, a very wide dynamic range regarding to zinc binding, very little solvent polarity dependence, and especially, the emission ratiometric property. All these properties make this system a unique candidate to tackle the problems in the research of zinc biology.
|
3 |
Development of Fluorescent Iron and Copper Sensors Activated by Hydrogen Peroxide or Ultraviolet LightHyman, Lynne January 2011 (has links)
<p>Fluorescent sensors provide a powerful analytical tool for the intracellular detection of metal cations. In some cases, these fluorescent metal-chelating sensors have helped elucidate the function of metal cations within complicated cellular systems. However, most measure or sense changes in the bulk concentration of a metal species and do not respond to those involved in a specific cellular event. For instance, misregulated copper and iron are implicated in neurodegenerative disease and cancer because of their ability to catalytically propagate the formation of the hydroxyl radical through reaction with hydrogen peroxide. A fluorescent sensor that is unresponsive to metal binding until activation by intracellular hydrogen peroxide could potentially pinpoint the location of this oxidative reaction and provide an understanding of the relationship between copper/iron and hydrogen peroxide. </p><p> Described here is the development of two fluorescent prochelators that show a selective fluorescence response to iron or copper only in the presence of hydrogen peroxide. A boronic ester masked spirolactam-based prochelator displays a copper-selective turn-on response after oxidation with hydrogen peroxide in organic solvents as determined by absorbance and fluorescence spectroscopy. However, a competing mechanism occurs in aqueous solution due to hydrolytic instability of the masked prochelator and results in a separate copper-dependent turn-on response as verified by liquid chromatography-mass spectroscopy. A second fluorescent prochelator design relies on metal-dependent fluorescence quenching after oxidation of a self-immolative boronic ester in both organic and aqueous solvents. Cellular microscopy studies show that the sensor's fluorescence intensity is unchanged until incubation with exogenous hydrogen peroxide, which resulted in a decreased fluorescent signal that is restored upon competitive chelation. Both of these prochelators provide a template for future applications and designs with improved properties.</p><p> Two additional chapters describe the development of a UV-activated iron prochelator and a new fluorescently tagged metal chelator. The UV-activated prochelator is protected with two nitrophenyl groups that are photolyzed with 350 nm light within 10 minutes to reveal a high affinity iron triazole-base chelator. A chelator of this nature may provide protection from UV-induced iron liberation and oxidative stress. A second triazole-based chelator with an embedded coumarin fluorophore was prepared as a potential metal sensor. However, this design showed off-target fluorescence responses, thus it cannot be utilized in its current form for metal detection.</p> / Dissertation
|
4 |
Synthèse et étude photophysique de sondes fluorescentes pour la détection de cations alcalins en milieux aqueux / Synthesis and photophysical properties of fluorescent alkali cations sensorsDepauw, Alexis 18 November 2014 (has links)
L’objet de cette thèse a été la réalisation de sondes moléculaires fluorescentes pour de la détection de césium et de potassium en milieu aqueux. Deux problématiques ont été abordées : la détection de traces de césium en vue d’applications environnementales, et la mesure de variations de potassium en milieu biologique en vue d’applications biologiques. La première partie de cette thèse concerne la détection du césium. Dans un premier temps, différentes entités complexantes du césium ont été étudiées dans le but de mesurer des concentrations de césium comprises entre 1.10-3 et 5 ppm. Certaines de ces sondes ont ensuite été utilisées au sein d’un système de mesures basé sur un circuit micro-fluidique destiné à mesurer le césium de façon continue. La seconde partie de cette thèse s’intéresse à la détection du potassium. Dont le but a été de mettre au point des sondes pour mesurer le potassium extracellulaire par imagerie de fluorescence. Une cage complexante sélective du potassium a tout d’abord été identifiée. Différentes stratégies ont ensuite été développées pour remplacer la coumarine par un fluorophore excitable à de plus hautes longueurs d’ondes. Parmi les sondes étudiées, le Calix-COU-Alcyne-Sulf a permis d’effectuer des mesures in vitro préliminaires qui ont montré que ce type de sondes ne perturbe pas l’activité neuronale et permet de détecter le potassium dans la gamme de concentration visée. / The aim of this PhD was to study fluorescent molecular sensors in order to detect cesium and potassium in aqueous media. Two different issues have been addressed: the detection of cesium traces for environmental applications, and the measure of potassium fluctuations for biological applications. The first part concerns the detection of cesium. Several complexing units were first studied, to measure cesium concentration between 1.10-3 and 5 ppm. Some of the molecules made were then used in a measuring system based on a micro-fluidic chip to measure cesium in a continuous way. The second part concerns the detection of potassium. The aim was to design sensors to measure extracellular potassium fluctuations by fluorescence imaging. A selective complexing unit was first found. Several strategies were then explored to replace a coumarin by a fluorophore excitable at higher wavelengths. Among the molecules made, the Calix-COU-Alcyne-Sulf enabled preliminary in vitro measurements and showed that this type of molecules does not affect the neuronal activity and enables to measure potassium in the range of concentration targeted.
|
5 |
Fluorescence Off-On Sensors for F-, K+, Fe3+, and Ca2+ IonsSui, Binglin 01 January 2014 (has links)
Fluorescence spectroscopy has been considered to be one of the most important research techniques in modern analytical chemistry, biochemistry, and biophysics. At present, fluorescence is a dominant methodology widely used in a great number of research domains, including biotechnology, medical diagnostics, genetic analysis, DNA sequencing, flow cytometry, and forensic analysis, to name just a few. In the past decade, with the rapid development of fluorescence microscopy, there has been a considerable growth in applying fluorescence technique to cellular imaging. The distinguished merits of fluorescence techniques, such as high sensitivity, non-invasiveness, low cytotoxicity, low cost, and convenience, make it a promising tool to replace radioactive tracers for most biochemical measurements, avoiding the high expense and difficulties of handling radioactive tracers. Among the wide range of applications of fluorescence technique, fluorescent sensing of various cations and anions is one of the most important and active areas. This dissertation is all about developing fluorescent sensors for physiologically significant ions, including F-, K+, Fe3+, and Ca2+. All of these sensors demonstrate fluorescence "turn-on" response upon interacting with their respective ions, which makes them much more appealing than those based on fluorescence quenching mechanisms. In Chapter II, a novel highly selective fluorescence turn-on F- sensor (FS), comprised of a fluorene platform serving as the chromophore, and two 1,2,3-triazolium groups functioning as the signaling moieties, is described. The function of FS is established on the basis of deprotonation of the C-H bonds of 1,2,3-triazolium groups, which makes FS the first reported anion sensor based on the deprotonation of a C-H bond. Easy-to-prepare test strips were prepared for determining F- in aqueous media, providing an inexpensive and convenient approach to estimate whether the concentration of F- contained in drinking water is at a safe level. Chapter III contains an optimized synthesis of a reported K+-selective group (TAC), and the development of two TAC-based fluorescence turn-on K+ sensors (KS1 and KS2). The synthetic route of TAC is shortened and its overall yield is enhanced from 3.6% to 19.5%. Both KS1 and KS2 exhibited excellent selectivity toward K+ over other physiological metal cations, high sensitivity for K+ sensing, and pH insensitivity in the physiological pH range. Confocal fluorescence microscopy experiments demonstrate that they are capable of sensing K+ within living cells. 2PA determination reveals that KS2 has a desirable 2PA cross section of 500 GM at 940 nm, which makes it a two-photon red-emitting fluorescent sensor for K+. Chapter IV describes the development of a novel BODIPY-based fluorescence turn-on Fe3+ sensor (FeS). FeS is a conjugate of two moieties, a BODIPY platform serving as the fluorophore and a 1,10-diaza-18-crown-6 based cryptand acting as the Fe3+ recognition moiety. FeS displays good selectivity, high sensitivity, reversibility, and pH insensitivity toward Fe3+ sensing. Based on its excellent performance in determining Fe3+ and very low cytotoxicity, FeS was effectively applied to sensing Fe3+ in living cells. In Chapter V, a new BODIPY-based fluorescence turn-on sensor (CaS) was designed and synthesized for selectively and sensitively determining Ca2+. CaS is comprised of two moieties, a BODIPY fluorophore and a Ca2+ complexing unit. CaS demonstrated selective fluorescence turn-on response towards Ca2+ over other biological metal cations. Moreover, CaS exhibited desirable sensitivity for Ca2+ detection, which makes it more suitable for extracellular Ca2+ determination. In addition, CaS was insensitive to the pH of the physiological environment, especially in the pH range of blood and serum. Therefore, CaS has potential to be applied to sensing Ca2+ ions in extracellular environments. Chapter VI discusses potential future work of KS2 and CaS, following the results achieved in this dissertation. Based on the desirable performances of both sensors in sensing their respective ions, future work could largely be focused on their applications in cellular imaging.
|
6 |
Capteurs fluorescents à base de liquides ioniques à tâche spécifique pour la quantification de traces de métaux lourds dans l’eau / Fluorescent sensors based on task specific ionic liquids for the quantification of traces of heavy metals ions in waterBell, Jérémy 20 September 2012 (has links)
Cette thèse a pour but la réalisation de capteurs fluorescents à base de liquides ioniques à tâche spécifique pour la quantification de traces de métaux lourds dans l’eau. Dans un premier temps, des sondes moléculaires fluorescentes efficaces pour la détection du mercure, du plomb et du cadmium ont été ciblées. Une première famille de molécules d’éthers lariat d’oxyde de phosphine a montré de bonnes affinités pour le plomb et le cadmium. Tandis qu’un dérivé de séléniure de phosphine s’est révélé être un très bon chemodosimètre pour le mercure avec une limite de détection basse de 3,4 nmol.L-1. Des sondes moléculaires fluorescentes dérivées de la 8-hydroxyquinoléine comportant un groupement phosphinate ou thiophosphinate capables de complexer le mercure en milieu aqueux ont permis d’atteindre une limite de détection exceptionnelle de 0,1 nmol.L-1. Enfin, un composé dérivé de la phénantroline capable de complexer très efficacement le cadmium avec la possibilité de détecter des traces de ce cation est présenté. Après indentification des sondes spécifiques pour les métaux lourds d’intérêt pour le projet, celles-ci ont étés fonctionnalisées afin de les incorporer dans un liquide ionique hydrophobe pour former des liquides ioniques à tâche spécifique pour l’extraction et la détection de métaux lourds. En parallèle du travail concernant les sondes moléculaires, un dispositif d’analyseur de métaux lourds portatif a été mis au point, notamment un nouveau module de détection optique développé. Ce dispositif permet là aussi de détecter des traces de mercure sub-nanomolaire. / The aim of this PhD is the realization of fluorescent sensors based on task specific ionic liquids for the extraction and the quantification of trace of heavy metals ions in water. As a first step, efficient fluorescent molecular probes for the detection of mercury, lead and cadmium were targeted. Two lariat ethers derivated from phosphine oxide show good affinity for lead and cadmium, while a phosphine selenide derivative has proven to be a very good chemodosimeter for mercury with a low detection limit of 3.4 nmol.L-1. Secondly, fluorescent molecular probes derived from 8-hydroxyquinoline having a phosphinate or thiophosphinate group are described. These molecules are able to coordinate mercury in aqueous medium and allow to detect a concentration of mercury in water of 0.1 nmol.L-1. Finally, a phenanthroline derivative for detection of cadmium in aqueous medium is described. With this compound, traces of cadmium can be detected. After identification of the most efficient probes for targeted heavy metals ions, they have been functionalized to be incorporated in a hydrophobic ionic liquid to form task specific ionic liquids for the extraction and detection of heavy metals ions. In parallel of this work on molecular probes, an portable analyzer of heavy metals ions has been developed, including a new optical detection module. This device can also detect sub-nanomolar traces of mercury.
|
7 |
New Optical Sensing for the Detection of Toxic Cations : Cesium, Uranyl and Arsenic / Nouveaux sensors optiques pour la detection de cations toxiques : Cesium, Uranyl et ArsenicPham, Xuan Qui 07 February 2018 (has links)
Ce travail concerne la synthèse, les études des propriétés photophysiques et de complexation des molécules fluorescentes pour la détection sélective de cations toxiques tels que le césium, l'uranyle et l'arsenic. Tout d'abord, deux nouveaux capteurs fluorescents pour le césium, Calix-COU-P et Calix-COU-Benz-CN, comportant le Calix[4]arène-couronne-6 et le fluorophore coumarine ont été synthétisés avec succès. En ce qui concerne le Calix-COU-P, une forte exaltation de fluorescence et un déplacement bathochrome d'absorption ont été observés en présence de césium dans l'eau. Une très bonne limite de détection (0,77 μM) ainsi qu'une excellente sélectivité vis-à-vis du césium ont été observées, démontrant que Calix-COU-P pourrait être un capteur exceptionnel pour la détection de césium dans l'eau. Calix-COU-Benz-CN possède quant à lui des propriétés photophysiques prometteuses dans un milieu partiellement aqueux avec des bandes d'absorption et de fluorescence intenses en visible grâce à la présence des groupements benzothiazole et cyano. L'addition de césium conduit aux déplacements ver le bleu des spectres d'absorption et une augmentation de l'intensité de fluorescence. L'étude de la cinétique de complexation entre Calix-COU-Benz-CN et Cs+ par la technique « stopped-flow » a montré une cinétique rapide à faibles concentrations de cations et une cinétique plus longue à des concentrations élevées (> 10 mM). Calix-COU-Benz-CN a ensuite été incorporé dans un dispositif microfluidique. Une courbe d'étalonnage qui représente l'intensité de fluorescence en fonction de la concentration du césium montre une valeur de limite de détection de l’ordre de 2,0 μM. Deux composés analogues contenant la même entité complexante Calix[4]arène-couronne-6 ont été également synthétisés et greffés sur des nanoparticules magnétiques afin d’obtenir un matériau fonctionnalisé pour la décontamination de l’eau contenant le césium radioactif. L'étude préliminaire montre que les nanoparticules fonctionnalisées pourraient capter efficacement une quantité très faible du césium dans l’eau contaminée. Par la suite, en vue de développer des capteurs pour l’uranyle, une série de dérivés de salicylaldéhyde-azine ont été synthétisés et caractérisés. Leurs propriétés d'émission induites par l'agrégation (AIE) ont été étudiées. Dans un mélange eau/acétonitrile, les composés U1 et U2 présentent une forte fluorescence lors de l'agrégation tandis que le composé U3 ne présente pas cet effet AIE dans la même condition. Grâce aux sites de complexation contenant des atomes d’oxygène et d'azote, ces molécules présentent une complexation efficace avec les ions uranyle et induire une extinction de la fluorescence. Dans notre étude, il était intéressant de noter la présence d’uranyle conduit à une destruction de l'agrégation, en particulier pour la molécule U2 dans un mélange eau / acétonitrile 60:40. L’extinction de l’émission a été expliquée par des processus de destruction d'agrégats émissifs lors de la complexation avec le cation. Le mécanisme proposé a été validé par des expériences de diffusion dynamique de la lumière et de microscopie électronique à balayage. Le composé U2 présente une bonne sélectivité vis-à-vis de l'uranyle en présence des lanthanides et des autres cations compétitifs. Le capteur permet la détection de concentrations de l’ordre ppb en uranyle. Enfin, la synthèse et l'étude de nouveaux capteurs pour la détection de l’arsenic ont également été discutées. Une série de capteurs fluorescents portant l’entité complexante cystéine a été synthétisée et leurs propriétés complexantes pour l'arsenic ont été étudiées. De plus, des nanoparticules d'or modifiées par la cystéine, le glutathion et le dithiothréitol ont été synthétisées. La complexation de l'ion arsenic avec ces nanoparticules a été étudiée et discutée. Une perspective sur le développement de nouveaux capteurs pour l’arsenic a été proposée. / This thesis focuses on the synthesis, photophysical and complexation studies of fluorescent molecules for the selective detection of toxic cations such as cesium, uranyl and arsenic. Firstly, two new fluorescent sensors Calix-COU-P and Calix-COU-Benz-CN for cesium cations based on Calix[4]arene-crown-6 and coumarin fluorophore were successfully synthesized. For Calix-COU-P, a remarkable fluorescence enhancement and a red shift in absorption were observed due to the complexation with cesium cation in water. Good detection limits (0.77 µM) together with an excellent selectivity towards cesium were observed, demonstrating that Calix-COU-P could be an outstanding sensor for the detection of cesium cation in water. Calix-COU-Benz-CN possesses exceptional photophysical properties in an organoaqueous solution with intense visible absorption and emission bands thanks to benzothiazole and cyano groups. The addition of cesium cation to Calix-COU-Benz-CN offered noticeable blue shifts of the absorption spectra and considerably enhanced the emission intensity. The kinetic study of the complexation between Calix-COU-Benz-CN and Cs+ by stopped-flow experiments showed a rapid kinetic at small concentrations of cations and a lower kinetic at higher concentrations (> 10 mM). Calix-COU-Benz-CN was then incorporated into a microfluidic device. The voltage signals, which are proportional to the fluorescence intensity, were monitored continuously at various cesium concentrations. A calibration curve which represents the fluorescence intensity as a function of cesium cation concentration gives a value of detection limit up to 2.0 µM. This value is only slightly higher than the detection limit obtained by fluorescence titration (1.67 µM), which suggests that the microfluidic device is capable to provide good sensitivity towards targeted ion for real-world applications. Furthermore, two analogous compounds Calix-DOP and Calix-DOP-P containing the same complexing entity were also synthesized and grafted onto magnetic nanoparticles in order to obtain a functionalized material for the decontamination of the water containing radioactive cesium. The preliminary study shows that functionalized nanoparticles could efficiently sequester cesium ions from contaminated water.Afterward, to develop new sensors for the detection of uranyl cations, a series of salicylaldehyde azine derivatives have been synthesized and characterized. Their aggregation induced emission properties were studied. In water/acetonitrile solvent, compounds U1 and U2 exhibited strong fluorescence upon aggregation while compound U3 did not aggregate and stayed in solution as well-dispersed molecules. Owning to oxygen and nitrogen binding sites, the molecules could complex uranyl ions and induced fluorescence quenching. In our study, it was interesting to understand that the effect of uranyl was somewhat more destructive rather than constructive to the aggregation. The most obvious quenching effect was observed for the aggregates of U2 in water/acetonitrile 60:40. The emission quenching was explained by aggregate-breaking processes, that the emitting aggregates could be destroyed by the complexation with uranyl cation. The proposed mechanism was further supported by dynamic light scattering and scanning electron microscope experiments. Compound U2 showed good selectivity towards uranyl over lanthanides and other common cations. The sensor could detect uranyl up to ppb scale.Finally, synthesis and studies of new sensors for the detection of arsenic ion were also discussed. A series of fluorescent sensors bearing cysteine moiety was synthesized and their complexing properties for arsenic were studied. Furthermore, gold nanoparticles which were modified by cysteine, glutathione and dithiothreitol were synthesized. The complexation of arsenic ion with these modified gold nanoparticles was studied and discussed. A perspective for further development of arsenic sensors was proposed.
|
8 |
First Supramolecular Fluorescence-Based Assay for Carbonic Anhydrase InhibitorsKoutnik, Petr 02 November 2016 (has links)
No description available.
|
9 |
Development of advanced cross conjugated systems and applications in ratiometric sensing: altering the electronic properties of cruciforms and poly(para-phenyleneethynylene)s to elicit differing reactivity and responseDavey, Evan Andrew 13 May 2012 (has links)
This research serves as a meticulous examination into cross-conjugated materials and how alterations of the frontier molecular orbitals can be utilized for applications in "chemical tongue" organic sensing devices. With conjugated materials being used in the development of new sensory devices for detection of metals, bacteria, and chemical warfare agents, the field of organic sensing is growing faster than ever. The purpose of this dissertation is to provide a precedence for the synthesis of new cross-conjugated compounds and outline potential applications of these materials as chemical sensors and molecular probes.
|
10 |
Fluorescent Visualization of Cellular Proton FluxesZhang, Lejie 06 September 2018 (has links)
Proton fluxes through plasma membranes are essential for regulating intracellular and extracellular pH and mediating co-transport of metabolites and ions. Although conventional electrical measurements are highly sensitive and precise for proton current detection, they provide limited specificity and spatial information. My thesis focuses on developing optical approaches to visualize proton fluxes from ion channels and transporters.
It has been demonstrated that channel-mediated acid extrusion causes proton depletion at the inner surface of the plasma membrane. Yet, proton dynamics at the extracellular microenvironment are still unclear. In Chapter II, we developed an optical approach to directly measure pH change in this nanodomain by covalently attaching small-molecule, fluorescent proton sensors to the cell’s glycocalyx using glyco-engineering and copper free ‘click’ chemistry. The extracellularly facing sensors enable real-time detection of proton accumulation and depletion at the plasma membrane, providing an indirect readout of channel and transporter activity that correlated with whole-cell proton current. Moreover, the proton wavefront emanating from one cell was readily visible as it crossed over nearby cells.
The transport of monocarboxylates, such as lactate and pyruvate is critical for energy metabolism and is mainly mediated by proton-coupled monocarboxylate transporters (MCT1-MCT4). Although pH electrodes and intracellular fluorescent pH sensors have been widely used for measuring the transport of proton-coupled MCTs, they are unable to monitor the subcellular activities and may underestimate the transport rate due to cell’s volume and intracellular buffering. In Chapter III, we used the Chapter II approach to visualize proton-coupled transport by MCT1-transfected HEK293T cells and observed proton depletion followed by a recovery upon extracellular perfusion of L-lactate or pyruvate. In addition, we identified a putative MCT, CG11665/Hrm that is essential for autophagy during cell death in Drosophila. The results demonstrate that Hrm is a bona fide proton-coupled monocarboxylate transporter that transports pyruvate faster than lactate.
Although the approach developed in Chapter II enables visualization of proton fluxes from ion channels and transporters, it’s not applicable in some cell types which cannot incorporate unnatural sialic acid precursors into their glycocalyx, such as INS-1 cells and cardiomyocytes. To address this, in Chapter IV we developed a pH-sensitive, fluorescent WGA conjugate, WGA-pHRho that binds to endogenous glycocalyx. Compared to the results in Chapter II and III, cell surface-attached WGA-pHRho has similar fluorescent signals in response to proton fluxes from proton channel Hv1, omega mutant Shaker-IR R362H and MCT1. With WGA-pHRho, we were able to label the plasma membrane of INS-cells and cardiomyocytes and visualized the transport activity of MCT1 in these cells.
Taken together, these findings provide news insights into proton dynamics at the extracellular environment and provide new optical tools to visualize proton fluxes from ion channels and transporters. Moreover, the modularity of the approaches makes them adaptable to study any transport events at the plasma membrane in cells, tissues, and organisms.
|
Page generated in 0.0968 seconds