• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 66
  • 17
  • 13
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 320
  • 66
  • 64
  • 63
  • 60
  • 49
  • 45
  • 35
  • 31
  • 30
  • 29
  • 26
  • 24
  • 24
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Screening of traditional Chinese medicine for anti-Alzheimer's disease drugs.

January 2005 (has links)
by Wong Kin Kwan Kelvin. / Thesis submitted in: September 2004. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 91-101). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / 摘要 --- p.iv / Abbreviations --- p.x / List of Figures --- p.xiii / List of Tables --- p.xiv / Chapter Chapter 1 --- Intorduction --- p.1 / Chapter 1.1 --- Alzheimer,s disease --- p.1 / Chapter 1.2 --- Histopathological features --- p.1 / Chapter 1.3 --- Tau protein pathology and AD --- p.4 / Chapter 1.4 --- Tau protein kinase I (TPKI)- GSK-3β --- p.6 / Chapter 1.5 --- Tau protein kinase II (TPKII)- Cyclin dependent kinase 5 (Cdk5) --- p.8 / Chapter 1.6 --- Available treatment --- p.9 / Chapter 1.7 --- Objectives of the present study --- p.12 / Chapter Chapter 2 --- Screening for GSK-3p inhibitors from Traditional Chinese Medicine (TCM) --- p.13 / Chapter 2.1 --- Introduction --- p.13 / Chapter 2.1.1 --- Phosphorylation of tau in AD --- p.13 / Chapter 2.1.2 --- Gsk-3p inhibitors --- p.14 / Chapter 2.1.3 --- Screening of GSK-3β inhibitor from TCM --- p.16 / Chapter 2.2 --- Material and Methods --- p.18 / Chapter 2.2.1 --- Preparation of extracts and fractions (AOF1-5) --- p.18 / Chapter 2.2.2 --- General cell culture techniques --- p.21 / Chapter 2.2.3 --- "3-(4,5-dimethyltiazoI-2-yl)-2, 5-diphenyl-tetrazolium (MTT) assay of AOF" --- p.23 / Chapter 2.2.4 --- Recombinant DNA techniques --- p.23 / Chapter 2.2.5 --- Transfection of GSK-3β and tau cDNA into COS7 cells --- p.28 / Chapter 2.2.6 --- Extraction of total proteins from culture cells --- p.28 / Chapter 2.2.7 --- Quantitation of protein by the Bradford method --- p.29 / Chapter 2.2.8 --- Protein separation by sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE) --- p.29 / Chapter 2.2.9 --- Western blot analysis --- p.31 / Chapter 2.2.10 --- GSK-3β kinase assay --- p.32 / Chapter 2.2.11 --- Determination of lithium content by atomic adsorption spectrophotometry --- p.34 / Chapter 2.3 --- Results --- p.35 / Chapter 2.3.1 --- Establishment of a co-transfected cell model for GSK-3β induced tau hyperphosphorylation --- p.35 / Chapter 2.3.2 --- Preliminary screening results of aqueous and ethanol extracts (AOF1 and AOF2) --- p.37 / Chapter 2.3.3 --- Ethanol extract of AOF inhibits GSK-3p induced tau phosphorylation in COS-7 cells --- p.40 / Chapter 2.3.5 --- Effect of the essential oils of AOF on GSK-3P induced tau phosphorylation --- p.46 / Chapter 2.3.6 --- The effect of AOF essential oil on GSK-3P activity in COS7 --- p.50 / Chapter 2.3.7 --- Lithium content of AOF extracts --- p.52 / Chapter 2.4 --- Discussion --- p.54 / Chapter Chapter 4 --- Evaluation of the in vivo efficacy of cryptotenshinone (CT) in Morris Water Maze Task (WMT) --- p.59 / Chapter 4.1 --- Introduction --- p.59 / Chapter 4.1.1 --- Involvement of Cholinergic system in cognitive dysfunction in AD --- p.59 / Chapter 4.1.2 --- Animal model for Alzheimer's disease --- p.60 / Chapter 4.1.3 --- Morris Watermaze Task (WMT) --- p.61 / Chapter 4.2 --- MATERIAL AND METHODS --- p.64 / Chapter 4.2.1 --- Morris Water maze setup --- p.64 / Chapter 4.2.2 --- Animal model --- p.66 / Chapter 4.2.3 --- Drug preparation --- p.67 / Chapter 4.2.4 --- Toxicity test of CT --- p.67 / Chapter 4.2.5 --- Water maze task (WMT) --- p.68 / Chapter 4.2.6 --- Visual acuity test --- p.73 / Chapter 4.3 --- RESULTS --- p.74 / Chapter 4.3.1 --- Chronic crytotanshinone treatment does not cause hepatic damages to the mice --- p.74 / Chapter 4.3.2 --- Training Session --- p.76 / Chapter 4.4 --- DISCUSSION --- p.85 / Chapter Chapter 5 --- General Discussion and Future Directions --- p.87 / Chapter 5.1 --- "AOF, the potential GSK-3 inhibitor" --- p.87 / Chapter 5.2 --- CT´ؤthe AChEI --- p.88 / References --- p.91 / Appendix --- p.102 / Chapter A1 --- Reagents for SDS-PAGE --- p.103 / Chapter A3 --- Solution components provided by QIAGEN Plasmid Maxipreps kit --- p.108 / Chapter A4 --- Reagents and medium for cell culture --- p.109 / Chapter A5 --- Reagents for kinase assay --- p.110 / Chapter A6 --- Raw data of figures --- p.112 / Chapter A7 --- Plasmid map of PCI-neo --- p.119
172

Uso contínuo de antipsicóticos modula fosfolipase A2 e glicogênico sintase quinase-3 beta em plaquetas de pacientes com esquizofrenia / Antipsychotics prolonged use modulates phospholipase A2 and glycogen synthase kinase-3 beta in platelets from patients with schizophrenia

Ferreira, Aline Siqueira 09 March 2012 (has links)
Duas enzimas têm-se destacado como possíveis marcadores biológicos periféricos na esquizofrenia: a fosfolipase A2 (PLA2) e a glicogênio sintase quinase-3 beta (GSK-3B). Essas moléculas exercem importante influência na arquitetura e plasticidade celulares, na regulação de vias metabólicas comuns (metabolismo de fosfolípides e via Wnt), em fatores de transcrição, na regulação de genes e na sobrevivência celular. Tais aspectos tornam pertinentes as investigações a respeito da possível participação dessas enzimas na fisiopatologia da esquizofrenia. Foi verificada a atividade de subtipos de PLA2 (método radioenzimático: iPLA2, cPLA2 e sPLA2) e os níveis de GSK-3B total (GSK-3Bt) e fosforilada [p(Ser9)-GSK-3B] (ELISA) em plaquetas de pacientes com esquizofrenia inicialmente livres de tratamento medicamentoso com média de 5 anos de doença (D+5a) (n=10), aos quais foi prescrita a olanzapina. Foi avaliado também um grupo de pacientes livres de tratamento medicamentoso com menos de 6 meses de sintomas psicóticos (D-6m) (n=6) aos quais foi posteriormente prescrito o haloperidol. Esses pacientes foram comparados com um grupo controle (n = 20) e avaliados longitudinalmente após o tratamento descrito por 8 semanas. Um grupo de 40 pacientes com esquizofrenia (tempo médio da doença: 17 anos) com pelo menos 6 meses de tratamento com antipsicótico (clozapina, olanzapina ou haloperidol) foi ainda avaliado. Os sintomas clínicos foram avaliados por meio da Escala de Avaliação das Síndromes Positiva e Negativa (PANSS). Quando comparado com o grupo controle, os pacientes D+5a apresentaram aumento da atividade de iPLA2 (p<0,01) e os pacientes D-6m apresentaram aumento da atividade de sPLA2 (p<0,05). Na avaliação longitudinal, somente a olanzapina diminuiu a atividade de iPLA2, cPLA2 e sPLA2 (p<0,01). Quando comparada a atividade dos subtipos de PLA2 entre os pacientes medicados a pelo menos 6 meses e o grupo controle, não foram observadas diferenças significativas. Quando comparado com o grupo controle, os pacientes D+5a apresentaram diminuição dos níveis de GSK-3Bt e p(Ser9)-GSK-3B (p<0,05). Na avaliação longitudinal, foi observado que somente a olanzapina aumentou os níveis de GSK-3Bt e p(Ser9)-GSK-3B (p < 0,01). Quando comparados os níveis de GSK-3Bt e p(Ser9)-GSK-3B entre os pacientes medicados a pelo menos 6 meses e o grupo controle não foram observadas diferenças significativas. Para os pacientes medicados a pelo menos 6 meses foram observadas correlações entre a sub-escala negativa da PANSS e os níveis de p(Ser9)-GSK-3B (r=,53, p<0,001). Sugere-se que a medicação module PLA2 e GSK-3B, independente do antipsicótico utilizado. Esses resultados apontam para uma futura aplicação dessas enzimas na verificação de adesão ao tratamento e estabilização do quadro clínico / The enzymes phospholipases A2 (PLA2) and glycogen synthase kinase-3 beta (GSK-3B) are thought to play a role in schizophrenia by influencing cellular architecture and plasticity, common signaling pathways (phospholipids metabolism and Wnt pathway), gene transcription, regulation factors and apoptosis. These aspects motivated the investigation of both these enzymes in schizophrenia. The activities of PLA2 subtypes (iPLA2, cPLA2 and sPLA2 by radio enzymatic method) and the levels of total GSK-3B and phosphorylated GSK-3B [p(Ser9)-GSK-3B] (by immune enzyme assay) were performed in platelets of drug free patients with schizophrenia for average 5 years of disease (D+5y) (n=10), who was lately prescribed with olanzapine and in drug naïve patients with less than 6 months of psychotic symptoms (D-6m) who was lately prescribed with haloperidol. These patients were compared to a control group (n=20) and were longitudinally evaluated after 8 weeks of monotherapy treatment with the prescribed antipsychotic. These enzymes were also investigated in a group of 40 patients with schizophrenia (mean duration of disease: 17 years) who were at least 6 months treated with antipsychotic (clozapine; olanzapine or haloperidol). Psychopathology was assessed with the Positive and Negative Syndrome Scale (PANSS). Patients D+5y presented higher iPLA2 activity than control group (p < 0.01) and patients D-6m presented higher sPLA2 activity than control group (p < 0.05). On longitudinal evaluation, only olanzapine decreased iPLA2, cPLA2 and sPLA2 activities (p < 0.01). In the long-term medicated patients group compared to the control group, no differences regarding PLA2 subtype activity were found. Patients D+5y presented lower GSK-3Bt and p(Ser9)-GSK-3B levels than control group (p<0.05). On longitudinal evaluation, only olanzapine increased GSK-3Bt and p(Ser9)-GSK-3B levels (p < 0.01). In the long-term medicated patients group compared to the control group, no differences regarding GSK-3B levels were found. For long-term medicated patients, it was observed correlation between p(Ser9)-GSK-3B and the PANSS negative syndrome subscale score (r = .53, p < 0.001). It was suggested that antipsychotic treatment modulated PLA2 and GSK-3B, in spite of the drug used. The results pointed to a future use of these enzymes to verify drug treatment compliance and clinical stabilization
173

New Functions for Old Genes in the Mouse Placenta

Singh, Umashankar January 2006 (has links)
Different species are separated by pre-zygotic reproductive barriers which impede gene flow between them. Rarely, when pre-zygotic barriers break down, interspecific hybrids are produced that display abnormal phenotypes, collectively called hybrid dysgenesis effects. Interspecies hybrid placental dysplasia (IHPD) in the genus Mus is a very consistent X-linked hybrid dysgenesis effect. Reproductive cloning and mutation of the gene Esx1 lead to placental hyperplasias with phenotypic similarities to IHPD. Comparative gene expression analysis of these three different models of placental hyperplasia showed that different mechanisms underlie these placental hyperplasias. We also identified several genes for which roles in placentation had not been studied earlier. We screened five of these genes, Car2, Ncam1, Fbln1, Cacnb3 and Cpe for their functions in placentation. Analysis of the spatio-temporal expression patterns of these genes during mouse placental development showed that they are ectopically expressed in IHPD placentas. Placental phenotype and gene expression was then studied in mice mutant for these genes. Our results show that complicated by the expression of functional counterparts, deletion of these genes failed to produce any consistent phenotype. Incompletely penetrant phenotypes were found in Cacnb3 and Cpe mutants. The Cpe mutant placentas recapitulated some IHPD phenotypes, despite co-expression of Cpd, a functionally redundant gene. Deregulated expression of Cpe and Cpd prior to manifestation of IHPD phenotype indicated that these are causally involved in IHPD and might be speciation genes in the genus Mus. We found that AT24 placentas also exhibit deregulated expression of these genes and could be used as a model to study IHPD. We tried rescuing the AT24 placental phenotype, by decreasing the expression of the over expressed genes. Normalization of transcript levels of these genes did not rescue the AT24 phenotype, thus indicating that up-regulation of these genes is a down-stream event in the generation of IHPD.
174

Glucose feeding during exercise : the mechanism for muscle and liver glycogen sparing in untrained rats

Porter, David A. 03 June 2011 (has links)
The purpose of this study was to examine the effect of glucose ingestion on glycogen use andresynthesis during moderate exercise in untrained rats. Female Wistar rats (avg. wt.= 262 g) were assigned to either a control (C), control exercise (CE) or experimental exercise (EE) group. To examine glycogen resynthesis during exercise from a carbohydrate feeding, the EE animals were given 1 ml of a 10% glucose solution enriched with U-14C-glucose via stomach tube and run for 1h at 20.6 m/min. To distinguish between glycogen synthesis from endogenous versus exogenous sources, the CE animals were given a 0.1 ml tail-vein injection of U-14C-glucose tracer and run for 1h at 20.6 m/min. The C animals served as resting controls. Immediately after sacrifice, samples of the liver, soleus m., plantaris m., gastrocnemius m. and w. vastus m. were removed and analyzed for glycogen concentration and 14C activity in a glycogen pellet. Muscle and liver glycogen was 4.72 umol/g and 5.16 umol/g, respectively, higher (p<0.05) in the EE animals than in the CE animals. The average 14C activity of the muscle glycogen (mean ± SE) (182.85+ 31.79 cpm/g) was greater (p<0.05) than that of the liver (47.44 + 8.10 cpm/g), indicating a greater exogenous glucose incorporation into muscle glycogen than liver glycogen during exercise. However, this activity represented less than 2% of the remaining glycogen found in each tissue. Thus, it appears that the glycogen sparing observed with the glucose feeding in untrained rats was the result of an increased contribution of blood glucose to muscle metabolism.Ball State UniversityMuncie, IN 47306
175

Multiple tasks of Glycogen synthase kinase-3beta (GSK-3£] ) and its partners

Lin, Ching-chih 10 September 2007 (has links)
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine protein kinase which plays a key role in several signaling pathways and its homologues have been identified in most eukaryotes. Since GSK3£]is an essential protein kinase that regulates numerous functions within the cell, an effort to survey possible GSK3£]- interacting proteins from a human testis cDNA library using the yeast two-hybrid system is made. Two interesting candidates are chosen to characterize their functions in this study. One is a centrosomal protein, hNinein, and the other is a novel inhibitor of GSK3£], designated as GSKIP (GSK3£] interaction protein). In the first part of the present thesis we describe the identification of four diverse CCII-termini of human hNinein isoforms, including a novel isoform 6, by differential expression in a tissue-specific manner. In a kinase assay, the CCII region of hNinein isoforms provides a differential phosphorylation site by GSK3£]. In addition, either N-terminal or CCIIZ domain disruption may cause hNinein conformational change which recruits £^-tubulin to centrosomal or non-centrosomal hNinein-containing sites. Further, depletion of all hNinein isoforms caused a significant decrease in the £^-tubulin signal in the centrosome. In domain swapping, it clearly shows that the CCIIX-CCIIY region provides docking sites for £^-tubulin. Moreover, nucleation of microtubules from the centrosome is significantly affected by the overexpression of either the full-length hNinein or CCIIX-CCIIY region. Taken together, these results show that the centrosomal targeting signals of hNinein have a role not only in regulating hNinein conformation, resulting in localization change, but also provide docking sites to recruit £^-tubulin at centrosomal and non-centrosomal sites. In the second part of the thesis we describe another candidate, GSK3£]interaction protein (GSKIP), to characterize its functions in neuron differentiation. We use human neuroblastoma SH-SY5Y cells as a model of neuronal cell differentiation. When overexpression of GSKIP prevents neurite outgrowth from RA-mediated differentiation, this result is similar to the presence of LiCl or SB415286, an inhibitor of GSK3£]. Further, GSKIP regulates the activity of GSK3£] through protein-protein interactions rather than post-modulation and GSKIP may affect GSK3£] on neurite outgrowth via inhibiting the specific phosphorylation site of tau. In addition to inhibition of neurite outgrowth, GSKIP overexpressed in SH-SY5Y cells also promotes cell cycle progression by analyzing cell proliferation with cell growth and MTT assay. Furthermore, GSKIP raises the level of £]-catenin and cyclin D1 through inhibition of GSK3£] activity in RA-mediated differentiation SH-SY5Y cells. Taken together, the data suggest that GSKIP, a dual functional molecule, is able to inhibit neurite outgrowth and promote cell proliferation via negative regulation of GSK3£] activity in RA-mediated differentiation of SH-SY5Y cells.
176

Cerebrospinal fluid biomarkers and molecular mechanism of tau¡¦s hyperphosphorylation by glycogen synthase kinase 3£] in Alzheimer¡¦s disease

Lin, Yuh-te 22 June 2009 (has links)
Alzheimer¡¦s disease (AD) is a neurodegenerative disorder characterized by progressive deterioration of cognitive functions and the presence of intracellular neurofibrillary tangles (NFT) and extraneuronal senile plaques (SP). The major component of NFT is the hyperphosphorylated microtubules-associated protein tau. SP is consistent of extracellular deposition of £]-amyloid (A£]), mainly A£]1-42 peptide (A£]42). Given the need of tools for early and accurate diagnosis and prediction of disease progression and monitoring the efficacy of therapeutic agents for AD, development of cerebrospinal fluid (CSF) biomarkers have become a rapidly growing research field. In our study, patients with AD (n=28), non-AD dementia (n=16), other neurological disorder (OND, n=14) and healthy controls (HC, n=21) were included. Our results revealed that AD patients have significant higher CSF total tau (t-tau) and lower A£]42 levels than HC and OND groups. There is no significant difference of both CSF t-tau and A£]42 levels between AD and non-AD dementia groups. These results suggest that both CSF t-tau and A£]42 are good biomarkers for distinguishing AD from non-dementia control subjects but demonstrate less discriminating power in differentiating AD from non-AD dementia. Moreover, our results show only CSF t-tau level but not A£]42 has an inverse correlation with the score of short-term memory patients with AD (spearman: r = -0.444; p=0.018). These data indicate the higher CSF t-tau level is associated with much NFT pathology and more severe impairment of short-term memory in AD patients. In the study of the moleacular mechanism of tau¡¦s hyperphosphorylation by glycogen synthase kinase 3b (GSK3b), we show that the T231 is the primary phosphorylation site for GSK3b and the tau227-237 (AVVRTPPKSPS) derived from tau containing T231P232 motif is identified as the GSK3b binding site with high affinity of a Kd value 0.82 ¡Ó 0.16 mM. Our results suggest that direct binding and phosphorylation of T231P232 motif by GSK3b induces conformational change of tau and consequentially alters the inhibitory activity of its N-terminus that allows the sequential phosphorylation of C-terminus of tau by GSK3b. Furthermore, hyperphosphorylation reduces tau¡¦s ability to promote tubulin assembly and to form bundles in N18 cells. T231A mutant completely abolishes tau phosphorylation by GSK3b and retains the ability to promote tubulin polymerization and bundle formation. Taken together, these results suggest that phosphorylation of T231 by GSK3b may play an important role in tau¡¦s hyperphosphorylation and functional regulation.
177

Phosphorylation of polyglycans, especially glycogen and starch

Nitschke, Felix January 2013 (has links)
Functional metabolism of storage carbohydrates is vital to plants and animals. The water-soluble glycogen in animal cells and the amylopectin which is the major component of water-insoluble starch granules residing in plant plastids are chemically similar as they consist of α-1,6 branched α-1,4 glucan chains. Synthesis and degradation of transitory starch and of glycogen are accomplished by a set of enzymatic activities that to some extend are also similar in plants and animals. Chain elongation, branching, and debranching are achieved by synthases, branching enzymes, and debranching enzymes, respectively. Similarly, both types of polyglucans contain low amounts of phosphate esters whose abundance varies depending on species and organs. Starch is selectively phosphorylated by at least two dikinases (GWD and PWD) at the glucosyl carbons C6 and C3 and dephosphorylated by the phosphatase SEX4 and SEX4-like enzymes. In Arabidopsis insufficiency in starch phosphorylation or dephosphorylation results in largely impaired starch turnover, starch accumulation, and often in retardation of growth. In humans the progressive neurodegenerative epilepsy, Lafora disease, is the result of a defective enzyme (laforin) that is functional equivalent to the starch phosphatase SEX4 and capable of glycogen dephosphorylation. Patients lacking laforin progressively accumulate unphysiologically structured insoluble glycogen-derived particles (Lafora bodies) in many tissues including brain. Previous results concerning the carbon position of glycogen phosphate are contradictory. Currently it is believed that glycogen is esterified exclusively at the carbon positions C2 and C3 and that the monophosphate esters, being incorporated via a side reaction of glycogen synthase (GS), lack any specific function but are rather an enzymatic error that needs to be corrected. In this study a versatile and highly sensitive enzymatic cycling assay was established that enables quantification of very small G6P amounts in the presence of high concentrations of non-target compounds as present in hydrolysates of polysaccharides, such as starch, glycogen, or cytosolic heteroglycans in plants. Following validation of the G6P determination by analyzing previously characterized starches G6P was quantified in hydrolysates of various glycogen samples and in plant heteroglycans. Interestingly, glucosyl C6 phosphate is present in all glycogen preparations examined, the abundance varying between glycogens of different sources. Additionally, it was shown that carbon C6 is severely hyperphosphorylated in glycogen of Lafora disease mouse model and that laforin is capable of removing C6 phosphate from glycogen. After enrichment of phosphoglucans from amylolytically degraded glycogen, several techniques of two-dimensional NMR were applied that independently proved the existence of 6-phosphoglucosyl residues in glycogen and confirmed the recently described phosphorylation sites C2 and C3. C6 phosphate is neither Lafora disease- nor species-, or organ-specific as it was demonstrated in liver glycogen from laforin-deficient mice and in that of wild type rabbit skeletal muscle. The distribution of 6-phosphoglucosyl residues was analyzed in glycogen molecules and has been found to be uneven. Gradual degradation experiments revealed that C6 phosphate is more abundant in central parts of the glycogen molecules and in molecules possessing longer glucan chains. Glycogen of Lafora disease mice consistently contains a higher proportion of longer chains while most short chains were reduced as compared to wild type. Together with results recently published (Nitschke et al., 2013) the findings of this work completely unhinge the hypothesis of GS-mediated phosphate incorporation as the respective reaction mechanism excludes phosphorylation of this glucosyl carbon, and as it is difficult to explain an uneven distribution of C6 phosphate by a stochastic event. Indeed the results rather point to a specific function of 6-phosphoglucosyl residues in the metabolism of polysaccharides as they are present in starch, glycogen, and, as described in this study, in heteroglycans of Arabidopsis. In the latter the function of phosphate remains unclear but this study provides evidence that in starch and glycogen it is related to branching. Moreover a role of C6 phosphate in the early stages of glycogen synthesis is suggested. By rejecting the current view on glycogen phosphate to be a stochastic biochemical error the results permit a wider view on putative roles of glycogen phosphate and on alternative biochemical ways of glycogen phosphorylation which for many reasons are likely to be mediated by distinct phosphorylating enzymes as it is realized in starch metabolism of plants. Better understanding of the enzymology underlying glycogen phosphorylation implies new possibilities of Lafora disease treatment. / Pflanzen und Tiere speichern Glukose in hochmolekularen Kohlenhydraten, um diese bei Bedarf unter anderem zur Gewinnung von Energie zu nutzen. Amylopectin, der größte Bestandteil des pflanzlichen Speicherkohlenhydrats Stärke, und das tierische Äquivalent Glykogen sind chemisch betrachtet ähnlich, denn sie bestehen aus verzweigten Ketten, deren Bausteine (Glukosylreste) auf identische Weise miteinander verbunden sind. Zudem kommen in beiden Kohlenhydraten kleine aber ähnliche Mengen von Phosphatgruppen vor, die offenbar eine tragende Rolle in Pflanzen und Tieren spielen. Ist in Pflanzen der Einbau oder die Entfernung von Phosphatgruppen in bzw. aus Stärke gestört, so ist oft der gesamte Stärkestoffwechsel beeinträchtigt. Dies zeigt sich unter anderem in der übermäßigen Akkumulation von Stärke und in Wachstumsverzögerungen der gesamten Pflanze. Beim Menschen und anderen Säugern beruht eine schwere Form der Epilepsie (Lafora disease) auf einer Störung des Glykogenstoffwechsels. Sie wird durch das erblich bedingte Fehlen eines Enzyms ausgelöst, das Phosphatgruppen aus dem Glykogen entfernt. Während die Enzyme, die für die Entfernung des Phosphats aus Stärke und Glykogen verantwortlich sind, hohe Ähnlichkeit aufweisen, ist momentan die Ansicht weit verbreitet, dass der Einbau von Phosphat in beide Speicherkohlenhydrate auf höchst unterschiedliche Weise erfolgt. In Pflanzen sind zwei Enzyme bekannt, die Phosphatgruppen an unterschiedlichen Stellen in Glukosylreste einbauen (Kohlenstoffatome 6 und 3). In Tieren soll eine seltene, unvermeidbare und zufällig auftretende Nebenreaktion eines Enzyms, das eigentlich die Ketten des Glykogens verlängert (Glykogen-Synthase), den Einbau von Phosphat bewirken, der somit als unwillkürlich gilt und weithin als „biochemischer Fehler“ (mit fatalen Konsequenzen bei ausbleibender Korrektur) betrachtet wird. In den Glukosylresten des Glykogens sollen ausschließlich die C-Atome 2 und 3 phosphoryliert sein. Die Ergebnisse dieser Arbeit zeigen mittels zweier unabhängiger Methoden, dass Glykogen auch am Glukosyl-Kohlenstoff 6 phosphoryliert ist, der Phosphatposition, die in der Stärke am häufigsten vorkommt. Die Tatsache, dass in dieser Arbeit Phosphat neben Stärke auch erstmals an Glukosylresten von anderen pflanzlichen Kohlenhydraten (wasserlösliche Heteroglykane) nachgewiesen werden konnte, lässt vermuten, dass Phosphorylierung ein generelles Phänomen bei Polysacchariden ist. Des Weiteren wiesen die Ergebnisse darauf hin, dass Phosphat im Glykogen, wie auch in der Stärke, einem bestimmten Zweck dient, der im Zusammenhang mit der Regulation von Kettenverzweigung steht, und dass kein zufälliges biochemisches Ereignis für den Einbau verantwortlich sein kann. Aufgrund der grundlegenden Ähnlichkeiten im Stärke- und Glykogenstoffwechsel, liegt es nahe, dass die Phosphorylierung von Glykogen, ähnlich der von Stärke, ebenfalls durch spezifische Enzyme bewirkt wird. Ein besseres Verständnis der Mechanismen, die der Glykogen-Phosphorylierung zugrunde liegen, kann neue Möglichkeiten der Behandlung von Lafora disease aufzeigen.
178

ROLE OF PI3K-AKT PATHWAY IN THE AGE ASSOCIATED DECLINE IN TLR MEDIATED ACTIVATION OF INNATE AND ADAPTIVE IMMUNE RESPONSES

Fallah, Mosoka Papa 01 January 2011 (has links)
Immunosenescence results in reduced immune response to infections with Streptococcus pneumoniae as well as to pneumococcal polysaccharide vaccines. The antibody response to the capsular polysaccharide (CPS) provides protection against S. pneumoniae infection. CPS immunoresponse is T cell independent and needs the macrophage-derived cytokines such as IL-12, IL-6 and IL-1β to elicit an antibody response. We showed a cytokine dysregulation, i.e. a decrease in IL-12, IL-6 and TNF-α but an increase in IL-10, in the aged (18-24 months old comparable to >65 years in human) compared to young adult mouse (8-12 weeks less than 65 years old) splenic macrophages (SM) or bone marrow derived macrophages (BMDM) activated via TLR4, TLR2 or TLR9 as well as heat killed Streptococcus pneumoniae (HKSP). There is also an age-associated defect in splenic B cells in the production of IgG3 upon stimulation with these ligands. A microarray analysis in SM followed by validation by both qt-RTPCR and western blots indicated that this age-associated defect in aged SM, BMDM and B cells was due to a heightened activity of the PI3K-Akt signaling pathway. We hypothesized that the senescence of immune responses in macrophages and B cells is due to an increase in activity of PI3K/Akt and decrease in the activity of GSK-3, the downstream kinase. Inhibition of the PI3-kinase with either LY294002 or Wortmannin restored the TLR2, 4, 9 and HKSP induced cytokine phenotype of the aged to that of the young adult in both the SM and BMDM and an enhanced IgG3 production in aged mice. We also showed that inhibition of glycogen synthase kinase-3 (GSK-3) the downstream target of the PI3K-Akt signaling pathway with SB216763 in SM, BMDM and B cells resulted in an enhancement in production of IL-10, IL-6 and IL-1β by macrophages and in B cell activation. Treatment of B cells with SB216763 in the presence of ligands for TLR-1/2, 4 or 9 as well as HKSP under in vitro conditions led to enhanced production of IgG3 and IgA, plasma cell formation and a slight increase in the proliferation of the B-cells with no adverse effects on the viability of the cells. Therefore, targeting the PI3K-AKT-GKS-3 signaling pathway could rescue the intrinsic signaling defect in the aged macrophages, increase IL-12 and IL-6, and enhance anti-CPS antibody responses.
179

A comparison of glycogen, glucose-6-phosphate dehydrogenase, and citrate synthase levels in previously untrained young and adult rats following an exhaustive swim

Colburn, Christopher A. January 1988 (has links)
Many of the physiological responses concomitant with exercise are understood. Similarly, many of the changes characterizing the aging process have been established. However, the combination of the two (ie. effects of aging on exercise or vice versa) presents a myriad of questions, of which many remain unanswered.The objective of this study was to establish the differences between previously untrained young and adult male Fischer 344 rats following an exhaustive swim for the following parameters: 1) muscle glycogen, an essential fuel substrate; 2) Glucose-6-phosphate dehydrogenase (G6PDH), a marker of inflammation and tissue damage; 3) citrate synthase (CS), an integral enzyme of the Kreb's cycle and a respiratory chain marker; 4) muscle protein; and 5) percent muscle dry weight.The rats were divided into two groups by age. Young (3 mo., n=16) and adult (12 mo., n=17) rats were randomly divided into sedentary (young sed (YSD) n=7 and adult sed (ASD) n=9) or exercised groups (young swimmers (YSW) n=8 and adult swimmers (ASW) n=8). Rats in the swimming groups were given a brief exposure to the water one week prior to their exhaustive swim to minimize the stress and confusion during the actual exercise bout. On the study days one randomly selected swimmer from each age group was swum to exhaustion and sacrificed via pneumothorax. One animal from each of the respective sedentary age groups was also randomly selected and sacrificed as above. The plantaris, rectus femoris, red vastus, soleus, triceps, and liver were surgically excised from each animal and frozen in liquid nitrogen for later analysis.While the younger animals had lower glycogen stores initially, following the exhaustive swim their reduction in muscle glycogen was approximately 150% that of the adult animals for any given muscle. Muscle glycogen levels in ASD and YSD rats were significantly higher than those of the YSW animals for all muscles with the exception of the YSD's soleus. However, the percent decrease in liver glycogen following the swim for the two age groups was almost identical (a reduction of 55.05% and 58.59% for the adult and young age groups, respectively).Although the adult animals were significantly heavier than the younger rats, this did not appear to cause a significant difference in their swim time to exhaustion. No significant differences were observed between the groups for muscle protein or G6PDH. Levels of CS were significantly higher in the YSD plantaris when compared to the ASW. Similarly, the ASD rectus femoris CS levels were significantly greater than those of the ASW. Although significant differences between groups in percent muscle dry weight existed for the plantaris, rectus femoris, and triceps such differences seemed to have little bearing on the two age group's swim to exhaustion times.On the basis of this study it was concluded that although starting with greater glycogen stores prior to exercise, adult animals use less of this substrate prior to exhaustion than do younger animals. While the mechanism for such a phenomenon was not discovered it is believed to be enzymatic in nature. Furthermore, the adult animals do not appear to exhibit significantly more tissue damage following an exhaustive swim than that seen in younger animals. / School of Physical Education
180

Dietary trends in muscle glycogen repletion among collegiate distance runners

Tanaka, Jill A. January 1994 (has links)
In an attempt to determine the extent to which well-trained endurance athletes practice the dietary recommendations for maximizing muscle glycogen resynthesis, twenty-four collegiate cross-country runners (14 males and 10 females) were chosen as subjects. The athletes kept four-day food and activity records during both a training and competitive period in the regular season. Energy intake was shown to be adequate in both phases. Total calories from carbohydrate, primarily complex, were found to be inadequate (<60%) for male runners and desirable (>60%) for females. Approximately 50% or less of the time carbohydrate was ingested immediately post-exercise, with even far less taken in suggested quantities (-1 g CHO/kg body weight). While the male athletes consumed primarily a combined solid and liquid form of carbohydrate immediately post-exercise, the females chose solid sources. Cereals and other breads were the most popular types of carbohydrate chosen immediately following exercise, in addition to commercial sports drinks/bars which were frequently ingested. An even more unfavorable trend in the distance runners was the infrequency of additional carbohydrate being ingested at two hour intervals following exercise. There were no significant differences in dietary trends between training and competitive phases. Overall these endurance athletes were not practicing the recommended feeding regimen for optimal muscle glycogen restoration. / Department of Home Economics

Page generated in 0.0386 seconds