• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 194
  • 117
  • 29
  • 28
  • 16
  • 15
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 2
  • Tagged with
  • 505
  • 171
  • 87
  • 70
  • 65
  • 62
  • 54
  • 52
  • 48
  • 43
  • 41
  • 38
  • 37
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Role of Molecular Chaperones in the Biosynthesis of Anion Exchanger 1

Patterson, Sian T. 31 August 2011 (has links)
Mutations in the SLC4A1 gene result in misfolding and trafficking defects of the human erythroid (AE1) and kidney (kAE1) forms of the anion exchanger 1 glycoprotein. This affects the amount of functional protein at the cell surface, resulting in hematological and renal diseases. In this thesis, the role of the quality control system of molecular chaperones (cytosolic and ER) was examined during the biosynthesis of wild type and mutant AE1 in different cellular models. The hypothesis to be tested is that molecular chaperones are responsible for the intracellular retention of AE1 mutants. Chaperones were found to interact with AE1 and kAE1 in vitro and in vivo (HEK-293, K562, MDCK cells). Disruption of the calnexin-AE1 interaction in K562 cells did not affect the cell surface levels of wild type or mutant erythroid AE1. AE1 also trafficked to the cell surface in mouse embryonic fibroblasts completely deficient in calnexin or calreticulin. In contrast, in MDCK cells, disruption of the calnexin-kAE1 interaction allowed functional dominant (R589H, R901stop), but not misfolded kAE1 mutants (kSAO, G701D), to escape the ER and traffic to the cell surface. Calnexin is therefore not required for the cell surface expression of erythroid AE1, but can be responsible for the intracellular retention of certain kAE1 mutants in cells with the complete complement of molecular chaperones. Components involved in membrane glycoprotein folding and quality control (calnexin, ERp57, Hsc70, Hsp70), were lost at later stages during the differentiation of CD34+ erythroid progenitor cells. This suggests that the loss of molecular chaperones may facilitate the massive production of red cell glycoproteins, allowing erythroid AE1 mutants to escape quality control, traffic to the plasma membrane, and be present in mature red blood cells. These studies demonstrate that the role chaperones play varies, depending on cellular context. By understanding the cellular context and factors involved, therapeutic strategies may be tailored to deal with protein misfolding diseases, and in the case of kAE1, rescue the cell surface trafficking of misfolded, but functional, transport protein using pharmacological modulators.
192

Role of Molecular Chaperones in the Biosynthesis of Anion Exchanger 1

Patterson, Sian T. 31 August 2011 (has links)
Mutations in the SLC4A1 gene result in misfolding and trafficking defects of the human erythroid (AE1) and kidney (kAE1) forms of the anion exchanger 1 glycoprotein. This affects the amount of functional protein at the cell surface, resulting in hematological and renal diseases. In this thesis, the role of the quality control system of molecular chaperones (cytosolic and ER) was examined during the biosynthesis of wild type and mutant AE1 in different cellular models. The hypothesis to be tested is that molecular chaperones are responsible for the intracellular retention of AE1 mutants. Chaperones were found to interact with AE1 and kAE1 in vitro and in vivo (HEK-293, K562, MDCK cells). Disruption of the calnexin-AE1 interaction in K562 cells did not affect the cell surface levels of wild type or mutant erythroid AE1. AE1 also trafficked to the cell surface in mouse embryonic fibroblasts completely deficient in calnexin or calreticulin. In contrast, in MDCK cells, disruption of the calnexin-kAE1 interaction allowed functional dominant (R589H, R901stop), but not misfolded kAE1 mutants (kSAO, G701D), to escape the ER and traffic to the cell surface. Calnexin is therefore not required for the cell surface expression of erythroid AE1, but can be responsible for the intracellular retention of certain kAE1 mutants in cells with the complete complement of molecular chaperones. Components involved in membrane glycoprotein folding and quality control (calnexin, ERp57, Hsc70, Hsp70), were lost at later stages during the differentiation of CD34+ erythroid progenitor cells. This suggests that the loss of molecular chaperones may facilitate the massive production of red cell glycoproteins, allowing erythroid AE1 mutants to escape quality control, traffic to the plasma membrane, and be present in mature red blood cells. These studies demonstrate that the role chaperones play varies, depending on cellular context. By understanding the cellular context and factors involved, therapeutic strategies may be tailored to deal with protein misfolding diseases, and in the case of kAE1, rescue the cell surface trafficking of misfolded, but functional, transport protein using pharmacological modulators.
193

Glycoprotein-mediated interactions of dendritic cells with surfaces of defined chemistries

Shankar, Sucharita P. 30 May 2007 (has links)
Implanted combination devices comprising both biological as well as biomaterial components may trigger non-specific inflammatory responses against the biomaterial component as well as specific immune responses against the biological component. This specific immune response may be enhanced by the biomaterial, thereby implying a biomaterial-mediated adjuvant effect, or in contrast may be mitigated by the biomaterial. Since adjuvants function by triggering dendritic cell (DC) maturation, biomaterials may regulate DC responses and hence facilitate DC-orchestrated host responses. This research work has focused on examining DC responses to different model self-assembled monolayer (SAM) biomaterial chemistries, as an in vitro readout of the potential of these biomaterials to trigger DC maturation. The underlying hypothesis was that DCs recognize and respond to biomaterials either indirectly through the adsorbed protein layer, specifically through carbohydrate modifications of these proteins, or through carbohydrates inherent in the biomaterial chemistry, using PRRs to initiate an immune response. Towards this goal, DCs were derived from human peripheral blood mononuclear cells (PBMCs) by culture with DC differentiation cytokines and the culture systems were characterized as being composed of DCs as well as associated T and B lymphocytes. Culture of DCs on different SAM chemistries implied differential DC responses in terms of morphology, maturation marker expression and allostimulatory capacities as well as distinct underlying mechanisms responsible for these responses. Enzyme-linked lectin (ELLA) assays were used to characterize the profiles of carbohydrates associated with serum/plasma proteins adsorbed to different SAM chemistries. Differential profiles of DC carbohydrate ligands of CLRs were present on different chemistries. Furthermore, the profiles of human serum/plasma proteins adsorbed to and eluted from different SAM chemistries were assessed using immunoblot analysis. Finally, to observe the roles of carbohydrates in supporting DC maturation in the presence of a biomaterial, DCs were cultured in the presence of partially de-glycosylated FBS from which DC carbohydrate ligands were selectively removed. This research is significant towards the ultimate development of optimal design criteria for biomaterials for use in diverse tissue-engineering or vaccine development applications for which a wide spectrum of adjuvant effects are required.
194

In Vivo Active Drug Uptake and Efflux at the Blood-Brain Barrier : With Focus on Drug Transport Interactions

Sadiq, Muhammad Waqas January 2012 (has links)
The blood-brain barrier (BBB) controls the movement of substances into and out of the brain. The tight junctions between endothelial cells and energy dependent transporters in the BBB influence rate and extent of drug distribution to the brain. The aim of this thesis was to study different methodological and pharmacokinetic aspects of drug transport at the BBB by characterizing possible active uptake and drug-drug interactions. Therefore, advanced tools for data acquisition and analysis were applied. The role of BBB transport in early drug development, with particular emphasis on in vitro-in vivo comparisons and species differences, was also investigated. Microdialysis in rats was used to study the BBB pharmacokinetics of oxymorphone, diphenhydramine (DPHM), oxycodone and morphine. Oxymorphone, DPHM and verapamil were all found to be actively taken up at the BBB, with brain to blood unbound drug ratios of 2, 5 and 2, respectively. The effect profile for oxycodone was successfully described using the modified M3 method for censored observations. In vitro experiments indicated a competitive interaction between DPHM and oxycodone on active uptake transport to the brain. No such interaction was observed in vivo due to much lower unbound concentrations achieved, compared with the in vitro Ki values. Active uptake of morphine at the BBB was not demonstrated even at very low concentrations as it was not possible to separate the active uptake transport process from active efflux by decreasing the morphine concentration. Mice carrying the human P-gp gene (hMDR1) were used to evaluate possible species differences in P-gp function. Differences were evident between the hMDR1 and normal mice in BBB penetration of various P-gp substrates and in the effect of blockers on P-gp function. Quantitative measurements of P-gp expression levels at the BBB and a comparison with human data are crucial for the future use of the hMDR1 model. In conclusion, this thesis reports active uptake of oxymorphone, DPHM and verapamil at the BBB. In vivo interaction of DPHM and oxycodone at the BBB was found not to be significant at therapeutic drug concentrations. Furthermore species differences were found between human and mouse P-gp function at the BBB.
195

Characterization of Eae4 and Eae19-22 in autoimmune neuroinflammation /

Nohra, Rita. January 2006 (has links)
Lic.-avh. (sammanfattning) Stockholm : Karol. inst., 2006. / Härtill 3 uppsatser.
196

The role of beta2-glycoprotein I-reactive T cells in antiphospholipid syndrome

Tolomeo, Tanya. January 1900 (has links)
Thesis (M.Sc.). / Written for the Dept. of Microbiology and Immunology. Title from title page of PDF (viewed 2008/07/30). Includes bibliographical references.
197

Mechanism of MDR protein mediated multidrug resistance /

Hoffman, Mary M. January 1997 (has links)
Thesis (Ph. D.)--Cornell University, May, 1997. / Includes bibliographical references (leaves 170-181).
198

Genetic variation in the multidrug resistance gene (MDRI) : impact on drug delivery and disposition /

Woodahl, Erica Lynn, January 2004 (has links)
Thesis (Ph. D.)--University of Washington, 2004. / Vita. Includes bibliographical references (leaves 127-141).
199

Molecular identification and functional characterization of P-glycoprotein in cornea and ocular pharmacokinetics of erythromycin in rabbits

Dey, Surajit, Mitra, Ashim K., January 2004 (has links)
Thesis (Ph. D.)--School of Pharmacy and Dept. of Chemistry. University of Missouri--Kansas City, 2004. / "A dissertation in pharmaceutical sciences and chemistry." Advisor: Ashim K. Mitra. Typescript. Vita. Description based on contents viewed Feb. 23, 2006; title from "catalog record" of the print edition. Includes bibliographical references (leaves 142-169). Online version of the print edition.
200

P-glycoprotein mediated efflux and CYP3A4 mediated metabolism of HIV-protease inhibitor, ritonavir, and its interaction with pure herbal constituents

Patel, Jignesh, Mitra, Ashim K., January 2004 (has links)
Thesis (Ph. D.)--School of Pharmacy and Dept. of Chemistry. University of Missouri--Kansas City, 2004. / "A dissertation in pharmaceutical science and chemistry." Advisor: Ashim K. Mitra. Typescript. Vita. Description based on contents viewed Feb. 27, 2006; title from "catalog record" of the print edition. Includes bibliographical references (leaves 175-199). Online version of the print edition.

Page generated in 0.067 seconds