• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 239
  • 56
  • 24
  • 21
  • 21
  • 21
  • 21
  • 21
  • 21
  • 7
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 439
  • 59
  • 51
  • 44
  • 40
  • 40
  • 38
  • 35
  • 26
  • 25
  • 23
  • 22
  • 22
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Method development and application for spatial proteome and glycoproteome profiling

Huang, Peiwu 04 September 2020 (has links)
Tissues are heterogeneous ecosystems comprised of various cell types. For example, in tumor tissues, malignant cancer cells are surround by various non-malignant stromal cells. Proteins, especially N-linked glycoproteins, are key players in tumor microenvironment and respond to many extracellular stimuli for involving and regulating intercellular signaling. Understanding the human proteome and glycoproteome in heterogeneous tissues with spatial resolution are meaningful for exploring intercellular signaling networks and discovering protein biomarkers for various diseases, such as cancer. In this study, we aimed to develop new liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based analytical methods for spatially-resolved proteome and glycoproteome profiling in tissue samples, and apply them for profiling potential biomarkers for pancreatic cancer. We first systematically and synchronously optimized the LC-MS parameters to increase peptide sequencing efficiency in data dependent proteomics. Taking advantage of its hybrid instrument design with various mass analyzer and fragmentation strageties, the Orbitrap Fusion mass spectrometer was used for systematically comparing the popular high-high approach by using orbitrap for both MS1 and MS2 scans and high-low approach by using orbitrap for MS1 scan and ion trap for MS2 scans. High-high approach outperformed high-low approach in terms of better saturation of the scan cycle and higher MS2 identification rate. We then systematically optimized various MS parameters for high-high approach. We investigated the influence of isolation window and injection time on scan speed and MS2 identification rate. We then explored how to properly set dynamic exclusion time according to the chromatography peak width. Furthermore, we found that the orbitrap analyzer, rather than the analytical column, was easily saturated with higher peptide loading amount, thus limited the dynamic range of MS1-based quantification. Finally, by using the optimized LC-MS parameters, more than 9000 proteins and 110,000 unique peptides were identified by using 10 hours of effective LC gradient time. The study therefore illustrated the importance of synchronizing LC-MS precursor targeting and high-resolution fragment detection for high-efficient data dependent proteomics. Understanding the tumor heterogeneity through spatially resolved proteome profiling is meaningful for biomedical research. Laser capture microdissection (LCM) is a powerful technology for exploring local cell populations without losing spatial information. Here, we designed an immunohistochemistry (IHC)-based workflow for cell type-resolved proteome analysis of tissue samples. Firstly, targeted cell type was stained by IHC using antibody targeting cell-type specific marker to improve accuracy and efficiency of LCM. Secondly, to increase protein recovery from chemically crosslinked IHC tissues, we optimized a decrosslinking procedure to seamlessly combine with the integrated spintip-based sample preparation technology SISPROT. This newly developed approach, termed IHC-SISPROT, has comparable performance with traditional H&E staining-based proteomic analysis. High sensitivity and reproducibility of IHC-SISPROT was achieved by combining with data independent proteomic analysis. This IHC-SISPROT workflow was successfully applied for identifying 6660 and 6052 protein groups from cancer cells and cancer- associated fibroblasts (CAFs) by using only 5 mm 2 and 12 μm thickness of hepatocellular carcinoma tissue section. Bioinformatic analysis revealed the enrichment of cell type-specific ligands and receptors and potentially new communications between cancer cells and CAFs by these signaling proteins. Therefore, IHC-SISPROT is sensitive and accurate proteomic approach for spatial profiling of cell type-specific proteome from tissues. N-linked glycoproteins are promising candidates for diagnostic and prognostic biomarkers and therapeutic targets. They often locate at plasma membrane and extracellular space with distinct cell type distribution in tissue microenvironment. Due to access to only low microgram of proteins and low abundance of glycoproteins in tissue sections harvested by LCM, region- and cell type-resolved glycoproteome analysis of tissue sections remains challenging. Here we designed a fully integrated spintip-based glycoproteomic approach (FISGlyco) which achieved all the steps for glycoprotein enrichment, digestion, deglycosylation and desalting in a single spintip device. Sample loss is significantly reduced and the total processing time is reduced to 4 hours, while detection sensitivity and label-free quantification precision is greatly improved. 607 N-glycosylation sites were successfully identified and quantified from only 5 μg of mouse brain proteins. By seamlessly combining with LCM, the first region-resolved N-glycoproteome profiling of four mouse brain regions, including isocortex, hippocampus, thalamus, and hypothalamus, was achieved, with 1,875, 1,794, 1,801, and 1,417 N-glycosites identified, respectively. Our approach could be a generic approach for region and even cell type specific glycoproteome analysis of tissue sections. Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with five year survival rate of around 8%. No effective biomarkers and targeted therapy are one of the major reasons for this urgent clinical situation. To explore potential protein biomarkers and drug targets located at intercellular space of pancreatic tumor microenvironment, we established chemical proteomic approach for deep glycoproteome profiling of PDAC clinical tissue samples based on the above- mentioned new proteomic methods. Taking advantage of a long chain biotin- hydrazide probe with less space hindrance, the new method outperformed traditional hydrazide chemistry method in terms of sensitivity, time efficiency and glycoproteome coverage. The method was successfully applied to enrich and validate LIF and its receptors as potential biomarkers for PDAC. In addition, to explore the full map of pancreatic tumor microenvironment glycoproteome with diagnostic and therapeutic values, we collected 114 pancreatic tissues, including 30 PDAC tumor tissues, 30 adjacent non-tumor (NT) tissues, 32 chronic pancreatitis tissues and 22 normal pancreatic tissues, and systematically profiled their glycoprotein expression pattern by using the developed glycoproteomic strategy. The deepest glycoproteome of PDAC was achieved, which covered the majority of previously reported glycoprotein biomarkers and drug targets for PDAC. Importantly, we discovered many new glycoproteins with differential expression in PDAC and normal tissue types. Moreover, LCM-based cell-type proteome profiling was achieved for 13 PDAC tissue samples, which covered more than 8000 proteins for both pancreatic stromal cells and pancreatic cancer cells in each sample. We therefore provided a valuable resource for screening novel and cancer specific glycoprotein biomarkers for pancreatic cancer with spatial resolution
262

Biochemical and genetic heterogeneity of the basic glycoproteins of parotid saliva

Friedman, Robert D. January 1971 (has links)
This document only includes an excerpt of the corresponding thesis or dissertation. To request a digital scan of the full text, please contact the Ruth Lilly Medical Library's Interlibrary Loan Department (rlmlill@iu.edu).
263

Functional and cell biological characterization of Saccharomyces cerevisiae Kre5p

Levinson, Joshua N. January 2002 (has links)
No description available.
264

Characterization of a composite cDNA clone encoding mouse testicular N-Cadherin and the mouse homologue of a human breast tumor autoantigen

Munro, Sandra Bronwen January 1993 (has links)
No description available.
265

Effects of magnesium deficiency on urinary glycoproteins in the rat

Poe, Clyde Douglas January 1968 (has links)
A series of four experiments was undertaken to determine both the quantitative and qualitative effects of magnesium deprivation on the urinary glycoproteins of adult and grow.ing rats. The glycoproteins were to be isolated in 0.58 M Na.Cl, the isolation technique for Tamm-Horsfall glycoprotein. Quantitative excretion was measured as ɣ hexose/rat/day. Qualitative analyses were reported as percent of dry weight of material isolated. A glycoprotein-containing material precipitated spontaneously from the urine before addition of NaCl. The dry weight ratio of spontaneously precipitating material (Fraction I) to salt-precipitable material (Fraction II) was 16 to one in normal animals, 3.4 to one in depleted animals. The hexose to amino acid to uronic acids ratio was the same for both fractions in both groups. No hexosamines were found in either fraction. The ash content was lower in Fraction I for deficient animals, but higher in Fraction II for deficient animals, when compared to control animals. Increased phosphate binding by Fraction II from deficient animals was indicated. A slight rise in total glycoprotein excreted daily was shown in animals fed a magnesium deficient diet, but not until after the first week, when irreversible kidney damage is initiated. Control animals whose weight ga:m was restricted to 32% 0£ normal excreted less of Fraction I per day. Amino acid patterns of both fractions from all groups were similar, but differed from those reported for human and sheep Tamm-Horsfall glycoprotein. All depleted animals showed a significant (p> 0.01} increase in kidney calcium content, and one group showed a significant (p> 0.01) decrease in kidney magnesium content at five weeks. / M.S.
266

Identification of interacting partner(s) of SARS-CoV spike glycoprotein.

January 2006 (has links)
Chuck Chi-pang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 138-160). / Abstracts in English and Chinese. / Thesis Committee --- p.ii / Abstract --- p.iii / 摘要 --- p.v / Contents --- p.vii / List of Figures --- p.xi / List of Tables --- p.xiii / Abbreviations --- p.xiv / Acknowledgement --- p.xviii / Introduction / Chapter 1. --- Background / Chapter 1.1 --- SARS / Chapter 1.1.1 --- Outbreak and Influence --- p.1 / Chapter 1.1.2 --- Clinical Features --- p.4 / Chapter 1.2 --- SARS-CoV / Chapter 1.2.1 --- Genomic Organization --- p.5 / Chapter 1.2.2 --- Morphology --- p.7 / Chapter 1.2.3 --- Phylogenetic Analysis --- p.9 / Chapter 1.3 --- S Glycoprotein / Chapter 1.3.1 --- Functional Roles --- p.11 / Chapter 1.3.2 --- Structure and Functional Domains --- p.12 / Chapter 1.3.3 --- Interacting Partners --- p.15 / Chapter 1.3.4 --- Viral Entry Mechanism --- p.17 / Chapter 1.4 --- Aim of Study / Chapter 1.4.1 --- Mismatch of SARS-CoV Tissue Tropism and Tissue Distribution of ACE2 --- p.20 / Chapter 1.4.2 --- Presence of Other Interacting Partner(s) --- p.22 / Chapter 1.4.3 --- Significance of the Study Materials and Methods --- p.22 / Chapter 2. --- Plasmid Construction / Chapter 2.1 --- Fragment Design / Chapter 2.1.1 --- Functional Domain Analysis --- p.23 / Chapter 2.1.2 --- Secondary Structure and Burial Region Predictions --- p.24 / Chapter 2.2 --- Vector Amplification / Chapter 2.2.1 --- E. coli Strain DH5a Competent Cell Preparation --- p.30 / Chapter 2.2.2 --- Transformation of E. coli --- p.30 / Chapter 2.2.3 --- Small-scale Vector Amplification --- p.31 / Chapter 2.3 --- Cloning of DNA Fragments into Various Vectors / Chapter 2.3.1 --- Primer Design --- p.32 / Chapter 2.3.2 --- DNA Amplification --- p.35 / Chapter 2.3.3 --- DNA Purification --- p.35 / Chapter 2.3.4 --- "Restriction Enzyme Digestion, Ligation and Transformation" --- p.36 / Chapter 2.3.5 --- Colony PCR --- p.37 / Chapter 2.4 --- DNA Sequence Analysis / Chapter 2.4.1 --- Primer Design --- p.35 / Chapter 2.4.2 --- DNA Amplification and Purification for DNA Sequence Analysis --- p.39 / Chapter 2.4.3 --- Sequence Detection and Result Analysis --- p.40 / Chapter 3. --- "Protein Expression, Purification and Analysis" / Chapter 3.1 --- Protein Expression in E. coli / Chapter 3.1.1 --- Molecular Weight and pI Predictions --- p.41 / Chapter 3.1.2 --- Glycerol Stock Preparation --- p.41 / Chapter 3.1.3 --- Protein Expression Induction --- p.41 / Chapter 3.1.4 --- Protein Extraction --- p.42 / Chapter 3.1.5 --- Affinity Chromatography --- p.42 / Chapter 3.1.6 --- Removal of GroEL --- p.43 / Chapter 3.1.7 --- Protein Solubilization and Refolding --- p.44 / Chapter 3.2 --- Protein Expression in P. pastoris / Chapter 3.2.1 --- Large-scale Plasmid Amplification --- p.46 / Chapter 3.2.2 --- Restriction Enzyme Digestion and Ethanol Precipitation --- p.47 / Chapter 3.2.3 --- Preparation of KM71H Competent Cells --- p.47 / Chapter 3.2.4 --- Electroporation --- p.48 / Chapter 3.2.5 --- Colony PCR --- p.48 / Chapter 3.2.6 --- Protein Expression Induction and Time Course Study --- p.49 / Chapter 3.2.7 --- Deglycosylation --- p.49 / Chapter 3.3 --- Protein Analysis / Chapter 3.3.1 --- Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis --- p.50 / Chapter 3.3.2 --- Western Blotting --- p.50 / Chapter 3.3.3 --- Mass Spectrometry --- p.51 / Chapter 3.3.4 --- N-terminal Sequencing --- p.52 / Chapter 3.3.5 --- Size Exclusion Chromatography --- p.52 / Chapter 4. --- Identification of Interacting Partner(s) / Chapter 4.1 --- VeroE6 Preparation / Chapter 4.1.1 --- Cell Culture --- p.53 / Chapter 4.1.2 --- Protein Extraction and Western Blotting --- p.53 / Chapter 4.2 --- Pull-down Assay --- p.54 / Chapter 4.3 --- Two-dimensional Gel Electrophores --- p.is / Chapter 4.3.1 --- Isoelectric Focusing --- p.56 / Chapter 4.3.2 --- Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis --- p.56 / Chapter 4.3.3 --- Silver Staining --- p.57 / Chapter 4.4 --- Mass Spectrometry / Chapter 4.4.1 --- Destaining --- p.58 / Chapter 4.4.2 --- In-gel Digestion --- p.58 / Chapter 4.4.3 --- Desalting by Zip-tip --- p.59 / Chapter 4.4.4 --- Loading Sample --- p.59 / Chapter 4.4.5 --- Peptide Mass Detection and Data Analysis --- p.59 / Results / Chapter 5. --- S Protein Expression / Chapter 5.1 --- Plasmid Construction --- p.61 / Chapter 5.2 --- Molecular Weight and pi Predictions --- p.63 / Chapter 5.3 --- Protein Expression and Optimization in E. coli / Chapter 5.3.1 --- "Comparison of Expression Levels, Solubility and Purities of S Protein Fragments" --- p.64 / Chapter 5.3.2 --- "Alteration of the Solubility in Various Cell Strains, Expression Conditions and Lysis Buffers" --- p.68 / Chapter 5.3.3 --- Identification and Remove of the non-target proteins --- p.72 / Chapter 5.3.4 --- Unfolding and Refolding --- p.79 / Chapter 5.4 --- Protein Expression and Optimization in P. pastoris / Chapter 5.4.1 --- "Expression Levels, Solubility and Purities of Various S Protein Fragments" --- p.85 / Chapter 5.4.2 --- Characterization of De-N-glycosylated Recombinant Proteins --- p.89 / Chapter 6. --- Identification of Interacting partners / Chapter 6.1 --- Practicability of Pull-down Assay / Chapter 6.1.1 --- ACE2 Extraction --- p.95 / Chapter 6.1.2 --- Pull-down of ACE2 by the P. pastoris-expressed recombinant RBD --- p.96 / Chapter 6.2 --- Pull-down Assay and Two-dimensional Gel Electrophoresis --- p.97 / Chapter 6.3 --- Identification of Putative Interacting Partners by MALDI-TOF-TOF --- p.107 / Chapter 7. --- Discussion / Chapter 7.1 --- S Protein Expression in E. coli / Chapter 7.1.1 --- Improving Recombinant Protein Expression Level and Solubility --- p.114 / Chapter 7.1.2 --- S Recombinant Protein Bound by GroEL --- p.117 / Chapter 7.2 --- S Protein Expression in P. pastoris / Chapter 7.2.1 --- Advantages of Using P. pastoris --- p.119 / Chapter 7.2.2 --- Variation of S Fragment Expression Levels --- p.120 / Chapter 7.2.3 --- Sizes of S Protein Fragments --- p.123 / Chapter 7.3 --- Identification of Interacting Partners / Chapter 7.3.1 --- Relationship between S Protein and Putative Interacting Partners --- p.124 / Chapter 7.3.2 --- Failure of Finding ACE2 --- p.125 / Chapter 7.3.2 --- Difficulty in the Identification of Protein Spots --- p.126 / Chapter 7.4 --- Conclusion --- p.131 / Chapter 7.5 --- Future Perspective --- p.132 / Chapter 8. --- Appendix --- p.133 / Chapter 9. --- References --- p.138
267

Investigating the nucleotide-binding domains of Abcb1a (mouse P-glycoproteinMdr3) : a mutational analysis approach

Carrier, Isabelle, 1976 Dec. 18- January 2008 (has links)
ABC transporters consist of two transmembrane domains (TMDs) that form the transport channel and two cytosolic nucleotide-binding domains (NBDs) that energize transport via ATP binding and hydrolysis. Using site-directed mutagenesis, the role of highly conserved residues in the NBDs of Abcb1a was investigated. / In both NBDs of Abcb1a the A-loop aromatic residue is a tyrosine: Y397 in NBD1 and Y1040 in NBD2. Another tyrosine (618 in NBD1 and 1263 in NBD2) also appears to lie close to the ATP molecule. These four tyrosine residues were mutated to tryptophan and the effect of these substitutions on transport properties, ATP binding, and ATP hydrolysis was analyzed. Y618W and Y1263W enzymes had catalytic characteristics similar to wild-type (WT) Abcb1a. On the other hand, Y397W and Y1040W showed impaired transport and greatly reduced ATPase activity, including an ∼10-fold increase in KM(ATP). Thus, Y397 and Y1040 play an important role in Abcb1a catalysis. / Since it was speculated that ABC transporters utilize a catalytic base to hydrolyse the beta-gamma phosphodiester bond of ATP, a search for that residue was undertaken. Six pairs of highly conserved acidic residues in the NBDs of Abcb1a were investigated. Removal of the charge in D558N and D1203N as well as in E552Q and E1197Q produced enzymes with severely impaired transport. These mutants were purified and characterized with respect to ATPase activity. Mutants D558N and D1203N retained some drug-stimulated ATPase activity and vanadate (Vi) trapping of 8-azido-[alpha32P]nucleotide confirmed slower basal and drug-stimulated hydrolysis. The E552Q and E1197Q mutants showed absence of ATPase activity but Vi trapping of 8-azido-[alpha 32P]nucleotide was observed, at a level similar to that of WT Abcb1a. Photolabelling by 8-azido-[alpha32P]nucleotide, in the presence or absence of drug, was also detected in the absence of Vi. The ATPase activity, binding affinity, and trapping properties of these glutamate residues were further analyzed. In addition to the E→Q mutants, the glutamates were individually mutated to D, N, and A. The double mutants E552Q/E1197Q, E552Q/K1072R, and K429R/E552Q were also analyzed. The results obtained suggest that 1) the length of the side-chain is important for the catalytic activity, whereas the charge is critical for full turnover to occur, 2) formation of the catalytic transition state does occur in the mutant site in the single-site mutants, suggesting that E552 and E1197 are not classical catalytic carboxylates, 3) steps after formation of the transition state are severely impaired in these mutant enzymes, 4) NBD1 and NBD2 are functionally asymmetric, and 5) the glutamates are involved both in NBD-NBD communication and transition-state formation through orientation of the linchpin residue.
268

Identification and investigations of leucine-rich repeats and immunoglobulin-like domains protein 2 (LRIG2)

Holmlund, Camilla, January 2010 (has links)
Diss. (sammanfattning) Umeå : Umeå universitet, 2010.
269

Investigating the nucleotide-binding domains of Abcb1a (mouse P-glycoproteinMdr3) : a mutational analysis approach

Carrier, Isabelle, 1976 Dec. 18- January 2008 (has links)
No description available.
270

Expression and characterization of SARS spike and nucleocapsid proteins and their fragments in baculovirus and E.coli. / Expression & characterization of SARS spike and nucleocapsid proteins and their fragments in baculovirus and E.coli

January 2005 (has links)
Wang Ying. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 124-135). / Abstracts in English and Chinese. / Acknowledgements / Abstract / 摘要 / Table of contents / List of figures / List of tables / List of abbreviations / CHAPTER / Chapter 1. --- Introduction / Chapter 1.1 --- Background of SARS and epidemiology / Chapter 1.2 --- SARS symptoms and infected regions / Chapter 1.3 --- SARS virus / Chapter 1.4 --- Treatment for SARS at present / Chapter 1.5 --- Vaccine development is a more effective way to fight against SARS / Chapter 1.6 --- Vaccine candidates / Chapter 1.6.1 --- Truncated S protein as a vaccine candidate / Chapter 1.6.2 --- Full-length N protein as a vaccine candidate / Chapter 1.7 --- E.coli expression system / Chapter 1.8 --- Baculovirus expression system / Chapter 1.8.1 --- Characteristics of baculovirus / Chapter 1.8.2 --- Infection cycle of baculovirus / Chapter 1.8.3 --- Control of viral gene expression in virus-infected cells / Chapter 1.8.4 --- Merits of baculovirus expression system / Chapter 1.9 --- Aim of study / Chapter 2. --- "Bacterial expression and purification of rS1-1000(E), rS401-1000(E) and rN(E)" / Chapter 2.1 --- Introduction / Chapter 2.2 --- Materials / Chapter 2.2.1 --- Reagents for bacterial culture / Chapter 2.2.2 --- Reagents for agarose gel electrophoresis / Chapter 2.2.3 --- 2'-deoxyribonucleoside 5'-triphosphate (dNTP) mix for polymerase chain reaction (PCR) / Chapter 2.2.4 --- Sonication buffer / Chapter 2.2.5 --- Reagents for immobilized metal affinity chromatography (IMAC) purification / Chapter 2.2.6 --- Reagents for gel filtration chromatography / Chapter 2.2.7 --- Reagents for sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE) / Chapter 2.2.8 --- Reagents for Western blotting / Chapter 2.3 --- Methods / Chapter 2.3.1 --- General techniques in molecular cloning / Chapter 2.3.2 --- "PCR amplification of the S1-400,S401-1000" / Chapter 2.3.3 --- Construction of clone pET-S 1-400 and PET-s401-1000 / Chapter 2.3.4 --- Construction of clone pAC-N / Chapter 2.3.5 --- Expression / Chapter 2.3.6 --- Inclusion bodies preparation / Chapter 2.3.7 --- Inclusion bodies solubilization using urea / Chapter 2.3.8 --- Protein refolding by rapid dilution and dialysis / Chapter 2.3.9 --- Purification of recombinant protein by nickel ion chelating Sepharose fast flow column (IMAC) / Chapter 2.3.10 --- Gel filtration chromatography for further purification / Chapter 2.3.11 --- Bradford assay for the protein concentration analysis / Chapter 2.3.12 --- Protein analysis / Chapter 2.4 --- Results / Chapter 2.4.1 --- SDS-PAGE analysis of the expressed proteins / Chapter 2.4.2 --- Western blot analysis of the bacterial cell lysate / Chapter 2.4.3 --- Protein purification by IMAC / Chapter 2.4.4 --- Purification of rS401-1000(E) by gel filtration / Chapter 2.4.5 --- Determination of production yield of recombinant fusion proteins / Chapter 2.5 --- Discussion / Chapter 2.5.1 --- Expression vector selected for rS1-400(E) and rS401-1000(E) expression / Chapter 2.5.2 --- Protein expression in E.coli / Chapter 2.5.3 --- Purification process / Chapter 3. --- Baculovirus expression and purification of rS401-1000(ACN) and rN(BMN) protein / Chapter 3.1 --- Introduction / Chapter 3.2 --- Materials / Chapter 3.2.1 --- Reagents for insect cell culture and virus work / Chapter 3.3 --- Methods / Chapter 3.3.1 --- "PCR amplification of N and cloning of S401-1000, N genes into the transfer vector pVL1393" / Chapter 3.3.2 --- Cloning of S401-1000 into transfer vector pFastBac HT B / Chapter 3.3.3 --- Virus works / Chapter 3.3.4 --- Identification of recombinant BmNPV or AcMNPV / Chapter 3.3.5 --- Manipulation of silkworm / Chapter 3.3.6 --- Mouse immunization for polyclonal antibody against rN(E) protein / Chapter 3.4 --- Results / Chapter 3.4.1 --- Expression of rN(BMN) in baculovirus / Chapter 3.4.2 --- Expression of rS401-1000(BMN) and rS401-1000(ACN) in baculovirus / Chapter 3.5 --- Discussion / Chapter 3.5.1 --- The expression level of rN(BMN) in both in vitro and invivo / Chapter 3.5.2 --- The rS401-1000(ACN) protein expression level in vitro / Chapter 3.5.3 --- Failure in generating rS401-1000(BMN) / Chapter 3.5.4 --- Purification process of rN(BMN) by IMAC / Chapter 4. --- "Characterization of recombinant rS1-400(E), rN(E), rN(BMN), rS401_1000(E) and rS401-1000(ACN)" / Chapter 4.1 --- Introduction / Chapter 4.2 --- Materials / Chapter 4.2.1 --- Reagents for enzyme-linked immunosorbent assay (ELISA) / Chapter 4.2.2 --- Reagents for purification of human IgG / Chapter 4.2.3 --- Source and identity of Immune sera / Chapter 4.3 --- Methods / Chapter 4.3.1 --- ELISA / Chapter 4.3.2 --- Purification process of human IgG / Chapter 4.4 --- Results / Chapter 4.4.1 --- Validation of Immune sera using SARS viral lysate / Chapter 4.4.2 --- Immunoreactivities of rS1-400(E) and rN(E) against pooled patients sera and normal human serum / Chapter 4.4.3 --- Immunoreactivity comparison of rN(E) and rN(BMN) / Chapter 4.4.4 --- Comparison of the immunoreactivities of rS401-1000(E) and rS401-1000(ACN) / Chapter 4.4.5 --- Immunoreactivity of SARS related proteins against Anti-SARS Antibody (Equine) / Chapter 4.5 --- Discussion / Chapter 4.5.1 --- Comparison of the immunoreactivities of SARS related proteins expressed in the present study / References

Page generated in 0.0349 seconds