• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Antinuclei production in central Au-Au collisions at RHIC

Struck, Christof. January 2003 (has links) (PDF)
Frankfurt (Main), University, Diss., 2003.
2

Proton irradiation of gold targets for 197(m)Hg production

Walther, Martin, Preusche, Stephan, Pietzsch, Hans-Jürgen, Bartel, Stig, Steinbach, Jörg 19 May 2015 (has links) (PDF)
Introduction Irradiation of gold with protons provides access to no-carrier-added 197mHg and 197Hg. Interests in these radionuclides were awakened by the unique chemical and physical properties of mercury and its compounds combined with convenient nuclear properties like suitable half life (197mHg: T1/2 = 23.8 h, 197Hg: T1/2 = 64.14 h), low energy gamma radiations for imaging, Auger – and conversion electrons for therapy. The high thermal conductivity of gold enables high current irradiations and the monoisotopic natural abundance of 197Au supersedes expensive enrichment of the target material. The 197Au(p,n)197(m)Hg reaction was applied until now only for beam monitoring1, stacked foil meas-urements2 or very small scale tracer production. Material and Methods The irradiations were performed at a Cyclone 18/9 (IBA, Louvain la Neuve, Belgium). Its beam-line was sealed with a 1.0 mm vacuum foil (high purity aluminum, 99.999 %) from Goodfellow (Huntingdon, England). High purity gold disks (23 mm diameter, 2 mm thickness, 99.999% pure, 1 ppm Cu) as target material were purchased from ESPI (Ashland, USA). Gold foils as alternative gold targets (12.5×12.5 mm, 0.25 mm thickness, 99.99+ %, 1 ppm Cu) between an aluminum disk (22 mm diameter, 1 mm thickness, 99.0 %, hard) and an aluminum lid (23 mm diameter, 99.0 %, hard) were purchased from Goodfellow (Huntingdon, England). Hydrochloric acid (30%) and nitric acid (65%) were purchased from Roth (Karlsruhe, Germany) in Rotipuran® Ultra quality. Deionized water with > 18 MΩcm resistivity was prepared by a Milli-Q® system (Millipore, Molsheim, France). For separation of target material and side products a liquid-liquid extraction method (Gold was extracted with methyl isobutyl ketone (MIBK) from 2 M HCl target solution) and an ion exchange method (cation exchange resin (Dowex50W-x8, 100–200 mesh, H+ form) were applied. Results and Conclusion No-carrier-added 197(m)Hg was produced from gold via the 197Au(p,n)197(m)Hg reaction at proton energies of 10 MeV in sufficient quantity and quality for imaging studies. Two different methods were studied for the separation of Hg radionuclides generated from Au targets. The results demonstrate the possibility to produce 197(m)Hg from gold at low proton energies. Combined with the presented radiochemical separation methods, the 197Au(p,n) reaction could be the basis for repeatable production of 197(m)Hg for imaging and therapy research on sufficient activity level.
3

Proton irradiation of gold targets for 197(m)Hg production

Walther, Martin, Preusche, Stephan, Pietzsch, Hans-Jürgen, Bartel, Stig, Steinbach, Jörg January 2015 (has links)
Introduction Irradiation of gold with protons provides access to no-carrier-added 197mHg and 197Hg. Interests in these radionuclides were awakened by the unique chemical and physical properties of mercury and its compounds combined with convenient nuclear properties like suitable half life (197mHg: T1/2 = 23.8 h, 197Hg: T1/2 = 64.14 h), low energy gamma radiations for imaging, Auger – and conversion electrons for therapy. The high thermal conductivity of gold enables high current irradiations and the monoisotopic natural abundance of 197Au supersedes expensive enrichment of the target material. The 197Au(p,n)197(m)Hg reaction was applied until now only for beam monitoring1, stacked foil meas-urements2 or very small scale tracer production. Material and Methods The irradiations were performed at a Cyclone 18/9 (IBA, Louvain la Neuve, Belgium). Its beam-line was sealed with a 1.0 mm vacuum foil (high purity aluminum, 99.999 %) from Goodfellow (Huntingdon, England). High purity gold disks (23 mm diameter, 2 mm thickness, 99.999% pure, 1 ppm Cu) as target material were purchased from ESPI (Ashland, USA). Gold foils as alternative gold targets (12.5×12.5 mm, 0.25 mm thickness, 99.99+ %, 1 ppm Cu) between an aluminum disk (22 mm diameter, 1 mm thickness, 99.0 %, hard) and an aluminum lid (23 mm diameter, 99.0 %, hard) were purchased from Goodfellow (Huntingdon, England). Hydrochloric acid (30%) and nitric acid (65%) were purchased from Roth (Karlsruhe, Germany) in Rotipuran® Ultra quality. Deionized water with > 18 MΩcm resistivity was prepared by a Milli-Q® system (Millipore, Molsheim, France). For separation of target material and side products a liquid-liquid extraction method (Gold was extracted with methyl isobutyl ketone (MIBK) from 2 M HCl target solution) and an ion exchange method (cation exchange resin (Dowex50W-x8, 100–200 mesh, H+ form) were applied. Results and Conclusion No-carrier-added 197(m)Hg was produced from gold via the 197Au(p,n)197(m)Hg reaction at proton energies of 10 MeV in sufficient quantity and quality for imaging studies. Two different methods were studied for the separation of Hg radionuclides generated from Au targets. The results demonstrate the possibility to produce 197(m)Hg from gold at low proton energies. Combined with the presented radiochemical separation methods, the 197Au(p,n) reaction could be the basis for repeatable production of 197(m)Hg for imaging and therapy research on sufficient activity level.

Page generated in 0.0339 seconds