Spelling suggestions: "subject:"theranostik"" "subject:"theranostika""
1 |
Proton irradiation of gold targets for 197(m)Hg productionWalther, Martin, Preusche, Stephan, Pietzsch, Hans-Jürgen, Bartel, Stig, Steinbach, Jörg 19 May 2015 (has links) (PDF)
Introduction
Irradiation of gold with protons provides access to no-carrier-added 197mHg and 197Hg. Interests in these radionuclides were awakened by the unique chemical and physical properties of mercury and its compounds combined with convenient nuclear properties like suitable half life (197mHg: T1/2 = 23.8 h, 197Hg: T1/2 = 64.14 h), low energy gamma radiations for imaging, Auger – and conversion electrons for therapy. The high thermal conductivity of gold enables high current irradiations and the monoisotopic natural abundance of 197Au supersedes expensive enrichment of the target material. The 197Au(p,n)197(m)Hg reaction was applied until now only for beam monitoring1, stacked foil meas-urements2 or very small scale tracer production.
Material and Methods
The irradiations were performed at a Cyclone 18/9 (IBA, Louvain la Neuve, Belgium). Its beam-line was sealed with a 1.0 mm vacuum foil (high purity aluminum, 99.999 %) from Goodfellow (Huntingdon, England). High purity gold disks (23 mm diameter, 2 mm thickness, 99.999% pure, 1 ppm Cu) as target material were purchased from ESPI (Ashland, USA). Gold foils as alternative gold targets (12.5×12.5 mm, 0.25 mm thickness, 99.99+ %, 1 ppm Cu) between an aluminum disk (22 mm diameter, 1 mm thickness, 99.0 %, hard) and an aluminum lid (23 mm diameter, 99.0 %, hard) were purchased from Goodfellow (Huntingdon, England). Hydrochloric acid (30%) and nitric acid (65%) were purchased from Roth (Karlsruhe, Germany) in Rotipuran® Ultra quality. Deionized water with > 18 MΩcm resistivity was prepared by a Milli-Q® system (Millipore, Molsheim, France). For separation of target material and side products a liquid-liquid extraction method (Gold was extracted with methyl isobutyl ketone (MIBK) from 2 M HCl target solution) and an ion exchange method (cation exchange resin (Dowex50W-x8, 100–200 mesh, H+ form) were applied.
Results and Conclusion
No-carrier-added 197(m)Hg was produced from gold via the 197Au(p,n)197(m)Hg reaction at proton energies of 10 MeV in sufficient quantity and quality for imaging studies.
Two different methods were studied for the separation of Hg radionuclides generated from Au targets. The results demonstrate the possibility to produce 197(m)Hg from gold at low proton energies. Combined with the presented radiochemical separation methods, the 197Au(p,n) reaction could be the basis for repeatable production of 197(m)Hg for imaging and therapy research on sufficient activity level.
|
2 |
Proton irradiation of gold targets for 197(m)Hg productionWalther, Martin, Preusche, Stephan, Pietzsch, Hans-Jürgen, Bartel, Stig, Steinbach, Jörg January 2015 (has links)
Introduction
Irradiation of gold with protons provides access to no-carrier-added 197mHg and 197Hg. Interests in these radionuclides were awakened by the unique chemical and physical properties of mercury and its compounds combined with convenient nuclear properties like suitable half life (197mHg: T1/2 = 23.8 h, 197Hg: T1/2 = 64.14 h), low energy gamma radiations for imaging, Auger – and conversion electrons for therapy. The high thermal conductivity of gold enables high current irradiations and the monoisotopic natural abundance of 197Au supersedes expensive enrichment of the target material. The 197Au(p,n)197(m)Hg reaction was applied until now only for beam monitoring1, stacked foil meas-urements2 or very small scale tracer production.
Material and Methods
The irradiations were performed at a Cyclone 18/9 (IBA, Louvain la Neuve, Belgium). Its beam-line was sealed with a 1.0 mm vacuum foil (high purity aluminum, 99.999 %) from Goodfellow (Huntingdon, England). High purity gold disks (23 mm diameter, 2 mm thickness, 99.999% pure, 1 ppm Cu) as target material were purchased from ESPI (Ashland, USA). Gold foils as alternative gold targets (12.5×12.5 mm, 0.25 mm thickness, 99.99+ %, 1 ppm Cu) between an aluminum disk (22 mm diameter, 1 mm thickness, 99.0 %, hard) and an aluminum lid (23 mm diameter, 99.0 %, hard) were purchased from Goodfellow (Huntingdon, England). Hydrochloric acid (30%) and nitric acid (65%) were purchased from Roth (Karlsruhe, Germany) in Rotipuran® Ultra quality. Deionized water with > 18 MΩcm resistivity was prepared by a Milli-Q® system (Millipore, Molsheim, France). For separation of target material and side products a liquid-liquid extraction method (Gold was extracted with methyl isobutyl ketone (MIBK) from 2 M HCl target solution) and an ion exchange method (cation exchange resin (Dowex50W-x8, 100–200 mesh, H+ form) were applied.
Results and Conclusion
No-carrier-added 197(m)Hg was produced from gold via the 197Au(p,n)197(m)Hg reaction at proton energies of 10 MeV in sufficient quantity and quality for imaging studies.
Two different methods were studied for the separation of Hg radionuclides generated from Au targets. The results demonstrate the possibility to produce 197(m)Hg from gold at low proton energies. Combined with the presented radiochemical separation methods, the 197Au(p,n) reaction could be the basis for repeatable production of 197(m)Hg for imaging and therapy research on sufficient activity level.
|
3 |
The Role of PSMA PET Imaging in Prostate Cancer Theranostics: A Nationwide SurveyBorkowetz, Angelika, Linxweiler, Johannes, Fussek, Sebastian, Wullich, Bernd, Saar, Matthias 22 February 2024 (has links)
Introduction: Prostate-specific membrane antigen (PSMA)-based imaging and theranostics have played an important ole in the diagnosis, staging, and treatment of prostate cancer (PCa). We aimed to evaluate the acceptance and use of PSMA theranostics among German urologists.- Methods: An anonymous online questionnaire was sent via survio.com to the members of the German Society of Urology (DGU). - Results: Seventy-two percent of participants performed PSMA positron emission tomography (PET) imaging regularly in biochemically recurrent PCa. Overall, 61% of participants considered PSMA-radioligand therapy to be very useful or extremely useful. PSMA PET imaging in high-risk PCa is more often considered by urologists working in a university setting than in nonuniversity settings or medical practices (51% vs. 25%, p < 0.001). Most perform PSMA-radioligand therapy as an option after all approved systemic treatments for metastatic metastatic castration-resistant PCa (56%) or after cabazitaxel (14%). A total of 93.9% and 70.3% of respondents consider the lack of reimbursement by health insurance to be the main obstacle to using PSMA PET imaging or radioligand therapy, respectively. - Discussion/Conclusion: PSMA-based maging/theranostics are already widely applied but would find even more widespread use if reimbursement is clearly regulated by health insurance in Germany.
|
Page generated in 0.0644 seconds