Spelling suggestions: "subject:"brain boundary migration"" "subject:"grain boundary migration""
1 |
Identification of atomistic mechanisms for grain boundary migration in [001] twist boundaries: molecular dynamics simulationsYan, Xinan Unknown Date
No description available.
|
2 |
Identification of atomistic mechanisms for grain boundary migration in [001] twist boundaries: molecular dynamics simulationsYan, Xinan 11 1900 (has links)
In this thesis, molecular dynamics simulations were performed to characterize the atomic motions governing grain boundary migration in a series of [001] twist boundaries. Particularly, migrations of a =36.87 5, a =22.63 13 and a =40.23 general high angle [001] twist boundaries driven by stored elastic energy in fcc Ni were investigated. Atomic motions during migration were identified as the combination of single atom jump and string-like cooperative atomic motions. The simulation results confirmed that the collective 4-atom shuffle motion was the rate controlling atomic motion during the migration of 5 twist boundary. As grain boundary local symmetry decreasing, string-like cooperative atomic motions became increasingly important. Eventually, both random single atom jump and string-like cooperative motions became dominant during the migration of general non- twist boundary. Furthermore, simulations showed that activation energy for grain boundary migration was well correlated with the average string length occurring within boundary. / Materials Engineering
|
3 |
Mechanistic understanding of Alloy 600 preferential intergranular oxidation : 'precursor events of stress corrosion cracking'Bertali, Giacomo January 2016 (has links)
Primary Water Stress Corrosion Cracking (PWSCC) of Alloy 600 and similar Ni-Cr-Fe alloys is regarded as one of the most important challenges to nuclear power plant operation. During the past decades the majority of research has focused on PWSCC crack growth rate measurements in order to assess the lifetime of real components and to develop empirical models for crack propagation. However, the incubation and initiation stages of PWSCC have the same or even greater importance than the propagation stage, particularly because SCC can be undetected for more than 20 years before the occurrence of a rapid and catastrophic failure. There is, therefore, the scientific need to understand the mechanisms playing a fundamental role in the formation and development of intergranular cracks embryo, the so-called SCC initiation "precursor events", in order to be able to predict and mitigate the occurrence of PWSCC. Amongst all the models proposed for SCC initiation, the internal oxidation mechanism proposed by Scott and Le Calvar in 1992 appears to be the most comprehensive. Although the internal oxidation mechanism is widely accepted, it still requires further elucidation, especially in terms of enhanced grain boundary diffusivity and the role of intergranular carbides on the oxidation mechanism. The present work has focused on the initial stages of intergranular oxidation of solution-annealed (SA) and thermally-treated (TT) Alloy 600 with the aim of understanding the active mechanism responsible for the enhanced intergranular oxide penetration kinetics. The material was tested in simulated PWR primary water at 320°C, high-pressure hydrogenated-steam at 400°C and low-pressure H2-steam environment at 480°C at potential more reducing than the Ni/NiO equilibrium. The detailed microstructural characterization was conducted using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and analytical transmission electron microscopy (ATEM) and demonstrated that Alloy 600SA is susceptible to diffusion-induced grain boundary migration (DIGM), preferential intergranular oxidation (PIO) and localised Cr and Fe depletions at the grain boundaries. The similar analyses performed on Alloy 600TT demonstrated reduced susceptibility to PIO and grain boundary migration. Further, detailed analyses confirmed that intergranular carbides were readily oxidized/consumed in all 3 environments and acted as Cr reservoir/O trap. These results shed additional light on the "precursor events" for PWSCC of Alloy 600, especially on the mechanism responsible for the enhanced Cr and O diffusivity and on the mechanism responsible for the enhanced Alloy 600TT SCC initiation resistance. Moreover, the strong similarities in the Alloy 600 oxidation behaviour observed for the 3 different environments and at the 3 different temperatures suggested that the same PIO mechanism is active in both steam and water and at temperatures between 320°C and 480°C. These results strongly support the possibility of using the low-pressure H2-steam environment as a substitute environment to accelerate PWSCC initiation without changing the mechanism.
|
4 |
Processus diffusionnels à l'origine de l'évolution de la composition d’un alliage au cours de l'oxydation sélective en pointe de fissures intergranulaires. Application à la CSC de l'Alliage 600 en milieu primaire des REP / Study of the chromium depletion in relation with oxidized grain boundaries ahead of the stress corrosion crack tip of Alloy 600 in PWR primary waterNguejio Nguimatsia, Josiane 09 December 2016 (has links)
La corrosion sous contrainte (CSC) des alliages à base nickel est un des principaux phénomènes de dégradation des composants du circuit primaire des Réacteurs à Eau Pressurisée (REP). La compréhension de ce mécanisme de fissuration est un élément essentiel pour la prolongation de la durée d’exploitation des réacteurs.Des études antérieures ont permis d’établir un modèle de propagation de la CSC basé sur une oxydation sélective et dissymétrique du joint de grains en pointe de fissure qui s’accompagne d’une zone appauvrie en chrome. La cinétique de diffusion du chrome étant plus lente que celle de l’oxygène, il est supposé que la diffusion du chrome est une étape limitante de la propagation de la fissure. Si ces observations ont été validées dans la littérature, les hypothèses proposées sur l’origine de l’appauvrissement en chrome dans le grain sont encore sujettes à discussion. Comme la diffusion du chrome en volume dans les alliages base nickel à 350°C ne permet pas d’expliquer les ordres de grandeur des appauvrissements en chrome mesurés dans la littérature, il est supposé qu’il existerait un élément accélérateur de la diffusion du chrome dans l’alliage en pointe de fissure. Ainsi, deux hypothèses sont proposées dans ces travaux : la diffusion du chrome accélérée sous l’effet de la plasticité et la migration des joints de grains induite par la diffusion.L’objectif principal de la thèse a été de confronter les deux hypothèses énoncées au moyen d’essais expérimentaux et de modélisation afin de déterminer le mécanisme de formation de la zone appauvrie en chrome et d’identifier les paramètres favorisant cet appauvrissement.A cet effet, des essais de diffusion sous charge ont été réalisés dans le but d’étudier l’effet de la déformation plastique sur la diffusion du chrome. Les résultats ont permis d’établir une relation entre le coefficient de diffusion et la vitesse de déformation. Ainsi, une accélération de la diffusion en volume de l’ordre de 106 est observée à 350°C sous l’effet de plasticité. De même, des traitements thermiques visant à mettre en évidence la migration des joints de grains induite par la diffusion (DIGM) sont présentés dans ces travaux. Les caractérisations chimiques et microstructurales montrent que la DIGM est bien associée à la formation d’une zone appauvrie en chrome observée dans le sillage du joint de grains migrant. Pour finir, une discussion est proposée afin de relier ces hypothèses au modèle de propagation de la CSC. / Stress Corrosion Cracking (SCC) of nickel base alloys is one of the major degradation phenomena in the primary circuit of Pressurized Water Reactors (PWR). Understanding the SCC mechanism is a key issue for the extension of reactor lifetime.A SCC model based on a selective and asymmetrical oxidation of the grain boundary ahead of the crack tip has been proposed in previous studies. Adjacent to this oxide, a chromium-depleted area is observed exclusively in one of the two grains adjacent to the grain boundary. As oxygen transport is found to be faster than chromium diffusion in the alloy, the latter is assumed to be the rate-limiting step of crack propagation. Nevertheless, the mechanism responsible for chromium depletion is still under debate. Indeed, the lattice and the grain boundary diffusion coefficients of chromium in nickel-based alloys at 350°C are not high enough to explain the chromium depletion magnitudes measured in the literature. Accordingly, factors accelerating chromium diffusion in the alloy ahead of the SCC crack tip should exist. Thus, two assumptions have been proposed in this work: plasticity-enhanced chromium diffusion and diffusion-induced grain boundary migration (DIGM).The aim of this study is to confront these two assumptions by combining both experiments and modeling in order to explain chromium depleted areas observed at the SCC crack tip.Thus, diffusion tests under loading were performed in order to study the effect of plastic deformation on chromium diffusion. Plasticity-enhanced diffusion is evidenced. A relationship between the diffusion coefficient and strain rate has been established leading to a 106-fold increase of the diffusion coefficient at 350°C. In addition, thermal treatments and oxidation tests have shown that diffusion-induced grain boundary migration occurs in Ni-Cr alloys. DIGM leads to dissymmetric Cr-depleted areas, observed in the wake of the moving grain boundary.
|
5 |
Atomistic simulations of defect nucleation and free volume in nanocrystalline materialsTucker, Garritt J. 20 May 2011 (has links)
Atomistic simulations are employed in this thesis to investigate defect nucleation and free volume of grain boundaries and nanocrystalline materials. Nanocrystalline materials are of particular interest due to their improved mechanical properties and alternative strain accommodation processes at the nanoscale. These processes, or deformation mechanisms, within nanocrystalline materials are strongly dictated by the larger volume fraction of grain boundaries and interfaces due to smaller average grain sizes. The behavior of grain boundaries within nanocrystalline materials is still largely unknown. One reason is that experimental investigation at this scale is often difficult, time consuming, expensive, or impossible with current resources. Atomistic simulations have shown the potential to probe fundamental behavior at these length scales and provide vital insight into material mechanisms. Therefore, work conducted in this thesis will utilize atomistic simulations to explore structure-property relationships of face-centered-cubic grain boundaries, and investigate the deformation of nanocrystalline copper as a function of average grain size. Volume-averaged kinematic metrics are formulated from continuum mechanics theory to estimate nonlocal deformation fields and probe the nanoscale features unique to strain accommodation mechanisms in nanocrystalline metals. The kinematic metrics are also leveraged to explore the tensile deformation of nanocrystalline copper at 10K. The distribution of different deformation mechanisms is calculated and we are able to partition the role of competing mechanisms in the overall strain of the nanocrystalline structure as a function of grain size. Grain boundaries are observed to be influential in smaller grained structures, while dislocation glide is more influential as grain size increases. Under compression, however, the resolved compressive normal stress on interfaces hinders grain boundary plasticity, leading to a tension-compression asymmetry in the strength of nanocrystalline copper. The mechanisms responsible for the asymmetry are probed with atomistic simulations and the volume-averaged metrics. Finally, the utility of the metrics in capturing nonlocal nanoscale deformation behavior and their potential to inform higher-scaled models is discussed.
|
6 |
Stress corrosion cracking and internal oxidation of alloy 600 in high temperature hydrogenated steam and waterLindsay, John Christopher January 2015 (has links)
In this study, the possibility of using low pressure hydrogenated steam to simulate primary water reactor conditions is examined. The oxides formed on Alloy 600 (WF675) between 350 Celsius and 500 Celsius in low pressure hydrogenated steam (with a ratio of oxygen at the Ni/NiO to oxygen in the system of 20) have been characterised using analytical electron microscopy (AEM) and compared to oxide that formed in a high pressure water in a autoclave at 350 Celsius with 30 cc/kg of hydrogen. Preferential oxidation of grain boundaries and bulk internal oxidation were observed on samples prepared by oxide polishing suspension (OPS). Conversely, samples mechanically ground to 600 grit produced a continuous, protective oxide film which suppressed the preferential and internal oxidation. The surface preparation changed the form of the oxides in both steam and autoclave tests. The preferential oxidation rate has been determined to be K_{oxide} = Aexp{-Q/RT}with A = 2.27×10^(−3) m^(2)s^(−1) and Q = 221 kJ.mol^(−1) (activation energy) for WF675 and A = 5.04 × 10^(−7) m^(2)s^(−1) and Q = 171 kJ.mol^(−1) for 15% cold worked WF675. These values are consistent with the activation energy of primary water stress corrosion cracking (PWSCC) initiation. Bulk oxygen diffusivities were calculated from the internal oxidation after 500 h exposures. At 500 Celsius the oxygen diffusivity was determined to be 1.79×10^(−20) m^(2)s^(−1) for WF675 and 1.21×10^(−20) m^(2)s^(−1) for 15% cold worked WF675, the oxygen diffusivity at 400 Celsius in 15% cold worked WF675 was calculated to be 1.49×10^(−22) m^(2)s^(−1).The Cr-depletion associated with preferential oxidation has been assessed by AEM. The Cr-depletion was asymmetric and it could not be accounted for by local variations in the diffusion rate. Chemically induced grain boundary migration is suggested as a possible explanation. Constant load SCC tests conducted in hydrogenated steam at 400 Celsius have shown a similar trend to the classical dependency of PWSCC as a function of potential. The SCC samples were also prepared with two surface finishes, OPS and 600 grit. In all SCC tests, significantly more cracking was observed on the OPS surface and all failures initiated from this surface.
|
7 |
Investigation of Ductility Dip at 1000˚C in Alloy 617Sjöström, Julia, Åkesson, Helena January 2017 (has links)
Alloy 617 displays a ductility dip during straining at exactly 1000˚C, leading to brittle fracture. A sudden decrease in ductility appearing during Gleeble hot ductility tests of Ni-based superalloys is a well-known phenomenon, while its cause is unknown. Many mechanisms have been established as possible contributors to the issue, and in later years not one, but the simultaneous presence of several of these mechanisms were confirmed as the cause. The ductility dip leads to solid state cracking and a specific solid state cracking phenomenon known as ductility dip cracking is specifically common in Ni-based superalloys. Ductility dip cracking is identified by intergranular cracks and the occurrence of specific precipitates, among other things. This work investigates the possibility that the decreased ductility is due to ductility dip cracking. Furthermore, other possible explanations are investigated. Visual examination was conducted through LOM, SEM and chemical analysis using EDS technique. Combined with thermodynamic calculations, the existence of Cr-rich M23C6 carbides, Ti(N,C) and Mo-rich particles, most likely M3B2, were confirmed. Further, it is established that the ductility dip is related to the lack of dynamic recrystallization at 1000˚C. It is not confirmed that the ductility dip in alloy 617 is due to ductility dip cracking. / Nickelbaslegeringen 617 uppvisar en minskning i duktilitet under Gleeble-dragprovning vid exakt 1000˚C vilket leder till sprött brott. En plötslig sänkning av duktiliteten vid varmdragning av Ni-baserade superlegeringar är ett välkänt fenomen, dock är orsaken inte fastställd. Många mekanismer har bekräftats som bidrag till problemet och under de senaste åren har den simultana närvaron av fler av dessa mekanismer bekräftats som orsaken. Sänkningen i duktilitet leder till sprickbildning i fast fas och en specifik typ av sprickbildning känd som ”ductility dip cracking” är speciellt förekommande i Ni-bas legeringar. Denna identifieras bland annat genom intergranulära sprickor och närvaron av specifika utskiljningar. Detta arbete undersöker möjligheten att duktilitetssänkningen beror på ”ductility dip cracking”. Dessutom undersöks fler tänkbara förklaringar. Visuell granskning genomfördes via LOM och SEM och analys av sammansättningar via EDS-analys. I kombination med termodynamiska simuleringar blev förekomsten av Cr-rika M23C6 karbider, Ti(N,C) och Mo-rika partiklar, troligtvis M3B2, bekräftad. Fortsatt är det bekräftat att duktilitetssänkningen är relaterat till avsaknaden av rekristallisation vid 1000˚C. Det är inte bekräftat i detta arbete att duktilitetssänkningen i legering 617 beror av ”ductility dip cracking”.
|
Page generated in 0.1181 seconds