• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 63
  • 11
  • Tagged with
  • 165
  • 165
  • 151
  • 94
  • 91
  • 81
  • 50
  • 48
  • 44
  • 39
  • 35
  • 35
  • 33
  • 28
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Simulation aux Grandes Échelles de l'Atomisation, Application à l'Injection Automobile.

Chesnel, Jeremy 10 June 2010 (has links) (PDF)
L'injection liquide est un processus important dans beaucoup d'applications industrielles et plus spécifiquement au sein des moteurs à combustion. Beaucoup de méthodes RANS (Reynolds Averaged Navier-Stokes) ont été développées, dans le cas de l'atomisation, aussi bien en utilisant le formalisme Lagrangien que Eulérien. Cependant, les simulations LES (Large Eddy Simulation) sont connues pour être plus précises et mieux représenter les phénomènes physiques dans le cas monophasique. Développer la LES pour le cas diphasique est donc naturellement une étape nécessaire à franchir. Cependant, la simulation de l'atomisation requiert un traitement spécial de l'interface. Deux cas limites sont traités dans la littérature : - L'interface peut être bien capturée par le maillage. A ces endroits la LES doit rejoindre les résultats de méthodes classiques utilisées en DNS comme les méthodes VOF ou level-set. Ceci est une approche nécessaire proche injecteur. - Le maillage ne permet plus de suivre fidèlement l'interface, lors de la création de plissements inférieurs à la taille d'une maille. Dans ce cas le calcul doit reproduire les résultats d'une LES considérant des structures et des gouttes inférieures à la taille de la maille. Cette approche est nécessaire loin de l'injecteur dans la zone dispersée. C'est dans ce cadre que le travail réalisé durant cette thèse s'articule : Le développement d'un modèle LES d'atomisation capable de passer continument d'une méthode à l'autre. La mise en œuvre de ce modèle a permis d'obtenir des résultats dans une configuration proche de l'injection Diesel, qui sont alors comparés à une base de données DNS.
12

Développement d'un modèle de flamme épaissie dynamique pour la simulation aux grandes échelles de flammes turbulentes prémélangées

Yoshikawa, Itaru 23 June 2010 (has links) (PDF)
La simulation numérique est l'un des outils les plus puissants pour concevoir etoptimiser les systèmes industriels. Dans le domaine de la Dynamique des FluidesNumériques (CFD, "Computational Fluid Dynamics"), la simulation auxgrandes échelles (LES, "Large Eddy Simulation") est aujourd'hui largementutilisée pour calculer les écoulements turbulents réactifs, où les tourbillons degrande taille sont calculés explicitement, tandis que l'effet de ceux de petitetaille est modelisé. Des modèles de sous-mailles sont requis pour fermer leséquations de transport en LES, et dans le contexte de la simulation de la combustionturbulente, le plissement de la surface de flamme de sous-maille doitêtre modélisé.En général, augmenter le plissement de la surface de flamme de sous-maille favorisela combustion. L'amplitude de la promotion est donnée par une fonctiond'efficacité, qui est dérivée d'une hypothèse d'équilibre entre la production etla destruction de la surface de flamme. Dans les méthodes conventionnelles,le calcul de la fonction d'efficacité nécessite une constante qui dépend de lagéométrie de la chambre de combustion, de l'intensité de turbulence, de larichesse du mélange de air-carburant etc, et cette constante doit être fixée audébut de la simulation. Autrement dit, elle doit être déterminé empiriquement.Cette thèse développe un modèle de sous-maille pour la LES en combustionturbulente, qui est appelé le modèle dynamique de flammelette épaissie (DTF,"dynamic thickened flamelet model"), qui détermine la valeur de la constanteen fonction des conditions de l'écoulement sans utiliser des données empiriques.Ce modèle est tout d'abord testé sur une flamme laminaire unidimensionnellepour vérifier la convergence de la fonction d'efficacité vers l'unité (aucun plissementde la surface de flamme de sous-maille). Puis il est appliqué en combinaisonavec le modèle dynamique de Smagorinsky (Dynamic Smagorinskymodel) aux simulations multidimensionnelles d'une flamme en V, stabilisée enaval d'un dièdre. Les résultats de la simulation en trois dimensions sont alorscomparés avec les données expérimentales obtenues sur une expérience de mêmegéométrie. La comparaison montre la faisabilité de la formulation dynamique.
13

Simulation numérique instationnaire des écoulements turbulent dans les diffuseur de centrales hydrauliques en vue de l'amélioration des performances

Duprat, Cédric 09 June 2010 (has links) (PDF)
L'aspirateur d'une centrale hydraulique est le composant où l'écoulement issu de la roue est décéléré, convertissant l'excès d'énergie cinétique en pression statique. Cet écoulement en rotation est turbulent et évolue dans une géométrie tridimensionnelle complexe. Dans le cas de la réhabilitation d'une centrale existante seule la turbine et les directrices sont modifiées. Dans certains cas, l'installation d'une nouvelle roue conduit à une chute de rendement. Cet accident correspond à une variation brutale du coefficient de récupération de pression de l'aspirateur pour une très faible variation de débit au voisinage du point de rendement optimal. Le modèle d'une installation récemment réhabilitée et présentant ce phénomène, est étudié numériquement. La méthode de simulation des grandes échelles a été choisie pour simuler l'écoulement. Afin de réduire le coût du maillage, un modèle analytique de loi de paroi est développé, prenant en compte à la fois le frottement pariétal et le gradient longitudinal de pression. Une méthode est proposée pour créer un champ de vitesses turbulent à partir de champ moyen issus de mesures expérimentales. Ces méthodes sont implémentées dans le logiciel libre OpenFOAM et testées dans un premier temps sur des géométries simplifiées. Plusieurs simulations ont été réalisées sur l'aspirateur à différent point de fonctionnement de part et d'autre du point de meilleur rendement. Les résultats ainsi obtenus ont été comparés à des mesures expérimentales. Ces comparaisons ont permis de valider la méthodologie utilisée. Le phénomène de chute de rendement recherché a ainsi pu être mis en évidence et expliqué.
14

Etude de quelques modèles de turbulence pour l'océanographie

Bennis, Anne-Claire 24 November 2008 (has links) (PDF)
L'océan est turbulent et donc il est important de modéliser la turbulence océanique afin de mieux pouvoir en analyser les effets. Dans cette thèse, on étudie tant d'un point de vue théorique que numérique des modèles de turbulence pour des applications océanographiques. Dans une première partie, on présente un bref état de l'art sur les modèles de turbulence URANS (Unsteady Reynolds Averaged Navier-Stokes) et LES (Large Eddy Simulation). La deuxième partie concerne les modèles URANS. On présente un nouveau modèle pour lequel on montre l'existence et l'unicité d'une solution dans le cas stationnaire. On montre que ce modèle est utilisable pour étudier la turbulence induite par le vent de surface en présence de convection, ce qui n'est pas le cas des modèles de Pacanowski-Philander et de Gent. Dans une troisième partie, on étudie un modèle LES. On adapte le modèle "Leray-déconvolution" à des conditions aux limites de type océan/atmosphère. Pour cela, on introduit une équation continue de déconvolution dont la solution est utilisée comme vitesse advective dans le modèle "Leray-déconvolution", ce qui nous amène à considérer un nouveau modèle LES, le modèle de déconvolution. On montre notamment que la solution du modèle de déconvolution converge vers une solution faible dissipative des équations de Navier-Stokes. On valide numériquement le modèle déconvolution en 2D grâce à des résultats DNS (Direct Numerical Simulation) dans des cas avec et sans bathymétrie.
15

Développement d'une modélisation basée sur la tabulation de schémas cinétique complexe pour la simulation aux grandes échelles (LES) de l'autoflammation et de la combustion turbulente non prémélangée dans les moteurs à pistons

Tillou, Julien 29 January 2013 (has links) (PDF)
Dans un contexte où les questions environnementales et énergétiques ont une importance capitale, les constructeurs automobiles sont fortement poussés à développer des moteurs à combustion interne toujours plus économes et moins polluants. Pour le développement de procédés de combustion innovants et l'amélioration de leur compréhension, la simulation aux grandes échelles apparaît comme un outil prometteur. Ce travail de thèse traite du développement et de la validation d'un modèle pour la simulation aux grandes échelles de la combustion Diesel. Le modèle ADF-PCM, basé sur la tabulation de flammes de diffusion approchées auto-inflammantes étirées et permettant la prise en compte d'une cinétique chimique détaillée, est utilisé dans ces travaux. Le modèle ADF est tout d'abord introduit. Il permet d'approximer des flammes de diffusion laminaires à partir de flammelettes dont les termes chimiques proviennent de calculs de réacteurs homogènes. La première étape de ces travaux consiste à valider ces flammes de diffusion approchées dans des configurations proches de celles observées dans les moteurs Diesel. Le modèle ADF-PCM, initialement développé dans un formalisme RANS, est ensuite étendu à un formalisme LES pour des écoulements diphasiques et intégré dans le code LES compressible AVBP. Un modèle de stratification en température ainsi que les termes de couplage avec la phase liquide décrite par un formalisme Eulérien sont développés. Le modèle ADF-PCM est ensuite validé sur deux expériences de sprays Diesel en enceinte fermée. Il permet une bonne reproduction des résultats expérimentaux en termes de délai d'auto-inflammation, de dégagement de chaleur et de hauteur d'accrochage de la flamme. Les prédictions du modèle ADF-PCM sont ensuite comparées avec celles d'autres modèles faisant différentes hypothèses simplificatrices par rapport à la structure de flamme et la stratification en sous-maille de la fraction de mélange. Les résultats obtenus à l'aide de ces différents modèles soulignent la nécessité de la prise en compte de ces effets, même pour des résolutions spatiales fines. Finalement, des comparaisons entre les résultats expérimentaux et la simulation sont réalisées avec le modèle ADF-PCM pour différents taux de gaz recirculants. Celui-ci montre une reproduction qualitative de l'effet des gaz recirculants sur la combustion.
16

Développement d'un code de transfert radiatif et de son couplage avec un code LES

Refahi, Sorour 18 February 2013 (has links) (PDF)
Les transferts radiatifs jouent un rôle important dans les chambres de combustion des installations industrielles. En effet, il existe un couplage fort entre la combustion turbulente et le rayonnement. Dans le but d'étudier ce couplage, le code Rainier est développé pour les calculs de pertes par rayonnement dans un écoulement réactif dans des géométries complexes. Ce code repose sur des simulations aux grandes échelles (LES) de la combustion turbulente. Il est basé sur les maillages tétraédriques non structurés. Le modèle de rayonnement appliqué à la modélisation des propriétés radiatives des gaz est le modèle CK (Correlated-k). La méthode statistique de Monte-Carlo (ERM) est utilisée pour résoudre l'équation de Transfert du Rayonnement (ETR). Le code de rayonnement est parallélisé et il montre une réponse linéaire en fonction du nombre de processeurs très proche de la réponse idéale. Une méthode de couplage de code de rayonnement avec le code de combustion LES est développée. Chacun des codes a sa propre logique d'architecture et de développement. En conséquence, le couplage entre les deux domaines d'étude est réalisé de telle façon que les échanges des données et les synchronisations entre eux soient assurés. Les résultats obtenus à partir du couplage des sur une chambre de combustion d'hélicoptère sont présentés. Nous avons montré que le rayonnement modifie les champs instantanés de température et d'espèces à l'intérieur de la chambre de combustion.
17

Modélisation de la combustion turbulente : application des méthodes de tabulation de la chimie détaillée l'allumage forcé

V. Subramanian, Subramanian 12 January 2010 (has links) (PDF)
L'optimisation des systèmes d'allumage est un paramètre critique pour la définition des foyers de combustion industriels. Des simulations aux grandes échelles (ou LES pour Large-Eddy Simulation) d'un brûleur de type bluff-body non pré-mélangé ont été menées afin de comprendre l'influence de la position de la bougie sur la probabilité d'allumage. La prise en compte de la combustion est basée sur une méthode de tabulation de la chimie détaillée (PCM-FPI pour Presumed Conditional Moments - Flame Prolongation of ILDM). Les résultats de ces simulations ont été confrontés des résultats expérimentaux disponibles dans la littérature. Dans un premier temps, les mesures de vitesse et du champ de richesse à froid sont comparées aux résultats de la simulation pour évaluer les capacités de prédiction en terme de structure de l'écoulement et de mélange turbulent. Un suivi temporel des vitesses et de la fraction de mélange est réalisé à différents points pour déterminer les fonctions de densité de probabilité (ou PDF)des variables caractéristiques de l'écoulement, à partir des champs résolus en LES. Les PDFs ainsi obtenues servent l'analyse des phénomènes d'allumages réussis ou déficients rencontrés expérimentalement. Des simulations d'allumage forcé ont été effectuées pour analyser les différents scénarios de développement de la flamme. Les corrélations entre les valeurs locales (fraction de mélange, vitesse) autour de la position d'allumage et les chances de succès de développement du noyau de gaz brûlés sont alors discutées. Enfin, une extension de la méthode PCM-FPI avec prise en compte des effets d'étirement est développée à l'aide d'une analyse asymptotique, puis confrontée aux résultats de mesures expérimentales.
18

Contribution au développement de la simulation des grandes échelles implicite pour compressible et écoulements turbulents réactifs / Contribution to the development of implicit large eddy simulation methods for compressible and reacting turbulent flows

Karaca, Mehmet 05 December 2011 (has links)
Ce travail a pour but de comparer les approches de simulation numérique des grandes échelles explicite (LES) et implicite (ILES) pour un jet turbulent non-réactif ou réactif d’hydrogène à grande vitesse dans un co-courant d’air, typique d’un super-statoréacteur. La résolution des calculs va de 32 × 32 × 128 à 256 × 256 × 1024, à l’aide d’un schéma WENO d’ordre 5. Les LES explicites emploient les modèles sous-maille de Smagorinsky et de Fonction de Structure Sélective, associés au transport moléculaire. Les LES implicites sont réalisées avec et sans modèle de transport moléculaire, en résolvant les équations de Navier- Stokes ou d’Euler. Dans le cas non-réactif, le modèle de Smagorinsky est trop dissipatif. Le modèle de Fonction de Structure Sélective améliore les résultats, sans faire mieux que l’approche ILES quelle que soit la résolution. Dans le cas réactif, une coupure physique visqueuse est indispensable pour fixer une épaisseur à la flamme, et assurer la convergence en maillage de l’approche ILES. On montre aussi que les résultats LES/ILES sont moins sensibles aux conditions d’injection que ceux de l’approche RANS. Le premier chapitre est une introduction générale au contexte de l’étude. Au second chapitre, on rappelle les équations générales pour un écoulement réactif et on détaille les modèles thermodynamique et de transport retenus. Au troisième chapitre, les équations de la LES et les modèles sous-maille sont présentés. On examine également quelques propriétés du schéma numérique. Le chapitre 4 est consacré à la méthode numérique et au code de calcul. Enfin, on présente les cas-tests et on discute les résultats au chapitre 5. / This work is intended to compare Large Eddy Simulation and Implicit Large Eddy Simulation (LES and ILES) for a turbulent, non-reacting or reacting high speed H2 jet in co-flowing air, typical of scramjet engines. Numerical simulations are performed at resolutions ranging from 32 × 32 × 128 to 256 × 256 × 1024, using a 5th order WENO scheme. Physical LES are carried out with the Smagorinsky and the Selective Structure Function models associated to molecular diffusion. Implicit LES are performed with and without molecular diffusion, by solving either the Navier-Stokes or the Euler equations. In the nonreacting case, the Smagorinsky model is too dissipative. The Selective Structure Function leads to better results, but does not show any superiority compared to ILES, whatever the grid resolution. In the reacting case, a molecular viscous cut-off in the simulation is mandatory to set a physical width for the reaction zone in the ILES approach, hence to achieve grid-convergence. It is also found that LES/ILES are less sensitive to the inlet conditions than the RANS approach. The first chapter is an introduction to the context of this study. In the second chapter, the governing equations for multispecies reacting flows are presented, with emphasis on the thermodynamic and transport models. In the third chapter, physical LES equations and explicit sub-grid modeling strategies are detailed. Some properties of the numerical scheme are also investigated. In chapter four, the numerical scheme and some aspects of the solver are explained. Finally, non-reacting and reacting numerical experiments are presented and the results are discussed.
19

Adaptation of phase-lagged boundary conditions to large-eddy simulation in turbomachinery configuration / Adaptation de conditions aux limites chorochroniques à la simulation aux grandes échelles d'un étage de turbomachine

Mouret, Gaëlle 30 June 2016 (has links)
Dans un contexte d'amélioration des moteurs aéronautiques en termes de consommation et de pollution, les simulations numériques apparaissent comme un outil intéressant pour mieux comprendre et modéliser les phénomènes turbulents qui se produisent dans les turbomachines. La simulation aux grandes échelles (SGE) d’un étage de turbomachine à des conditions réalistes (nombre de Mach, nombre de Reynolds…) reste toutefois hors de portée dans le cadre industriel. La méthode chorochronique, aujourd’hui largement utilisée pour les calculs URANS, permet de réduire le coût des simulations numériques, mais elle implique de stocker le signal aux frontières du domaine pendant une période complète de l’écoulement. Le stockage direct de l’information étant exclu étant donné la taille des maillages et les pas de temps mis en jeu, la solution la plus courante actuellement est de décomposer le signal sous la forme de séries de Fourier. Cette solution ne retient du signal qu’une fréquence fondamentale (la fréquence de passage de la roue opposée) et un nombre limité d’harmoniques. Dans le cadre d’une SGE, elle implique donc une grande perte d’énergie, et le filtrage des phénomènes décorrélés de la vitesse de rotation comme par exemple un lâcher tourbillonnaire. Le remplacement de la décomposition en séries de Fourier par une décomposition aux valeurs propres (POD pour Proper Orthogonal Decomposition) permet de stocker le signal aux interfaces sans faire d’hypothèse sur les fréquences contenues dans le signal et donc de réduire la perte d’énergie liée à l’utilisation d’un modèle réduit. La compression s’effectue en supprimant les plus petites valeurs singulières et les vecteurs associés. Cette nouvelle méthode est validée sur la simulation URANS d'étages de turbomachines et comparée aux conditions classiques utilisant les séries de Fourier et à des calculs de références contenant plusieurs aubes par roue. Elle est ensuite appliquée à la simulation aux grandes échelles de l'écoulement d'un cylindre. Les erreurs causées par l'hypothèse chorochronique et par la compression sont séparées et on montre que l'utilisation de la POD permet de réduire de moitié le filtrage des fluctuations de vitesses par rapport aux séries de Fourier pour un même taux de compression. Enfin, la simulation aux grandes échelles d'un étage de turbomachine avec des conditions chorochroniques POD est réalisée afin de valider la méthode dans le cadre d'une configuration industrielle. / The more and more restrictive standards in terms of fuel consumption and pollution for aircraft engines lead to a constant improvement of their design. Numerical simulations appear as an interesting tool for a better understanding and modeling of the turbulent phenomena which occur in turbomachinery. The large-eddy simulation (LES) of a turbomachinery stage at realistic conditions (Mach number, Reynolds number...) remains out of reach for industrial congurations. The phase-lagged method, widely used for unsteady Reynolds-averaged Navier--Stockes (URANS) calculations, is a good candidate to reduce the computational cost. However, it needs to store the signal at all the boundaries over a full passage of the opposite blade. A direct storage of the information being excluded given the size of the mesh grid and timesteps involved, the most used solution currently is to decompose the signal into Fourier series. This solution retains the fundamental frequency of the signal (the opposite blade passage frequency) and a limited number of harmonics. In the frame of a LES, as the spectra are broadband, it implies a loss of energy. Replacing the Fourier series decomposition by a proper orthogonal decomposition (POD) allows the storage of the signal at the interfaces without making any assumptions on the frequency content of the signal, and helps to reduce the loss of energy caused by the phase lagged method. The compression is done by removing the smallest singular values and the associated vectors. This new method is first validated on the URANS simulations of turbomachinery stages and compared with Fourier series-based conditions and references calculations with multiple blades per row. It is then applied to the large eddy simulation of the flow around a cylinder. The error caused by the phase-lagged assumption and compression are separated and it is showed that the use of the POD allows to halve the filtering of the velocity fluctuations with respect to the Fourier series, for a given compression rate. Finally, the large eddy simulation of a compressor stage with POD phase-lagged conditions is carried out to validate the method for realistic turbomachinery configurations.
20

Far-field combustion noise modeling of turbofan engine / Outils de prévision du bruit de chambre de combustion de turboréacteurs

Férand, Mélissa 06 February 2018 (has links)
Depuis l'introduction du moteur à réaction pour la propulsion des avions dans les années 1950, l'acoustique est devenue d'un grand intérêt pour l'industrie du moteur. Alors que les turboréacteurs initiaux étaient dominés par le bruit de jet, l'introduction du moteur à turbofan dans les années 1960 a permis d'atténuer le bruit de jet, mais a introduit le bruit de soufflante. Dans les années 1970, grâce à de nouvelles conceptions avancées pour la réduction du bruit, une réduction majeure du bruit des avions s'en est suivie et la contribution du bruit de combustion a été remise en question. En effet, une réglementation plus restrictive du bruit pourrait exiger que le bruit de fan et de jet soient réduits au point où une réduction du bruit de combustion devienne également nécessaire. En outre, la conception des chambres de combustion est pilotée uniquement par la restriction des polluants chimiques produits par la combustion, l'efficacité et la consommation. L'impact de ces nouveaux concepts sur le bruit de combustion n'est actuellement pas une contrainte prise en compte lors de la conception. Avant d'envisager de réduire le bruit de combustion, il faut d'abord en comprendre les différents mécanismes. Cependant, proposer une méthode de prédiction pour le bruit de combustion n'est pas une tâche facile en raison des multiples interactions physiques impliquées lors des processus de combustion. De nombreuses expériences existent pour évaluer le bruit de combustion causé par les flammes ou des chambres de combustion simplifiées. Cependant, seuls quelques-uns considèrent le chemin de propagation complet du bruit de combustion provenant d'un moteur, car il est difficile d'isoler cette source acoustique du bruit des autres modules du moteur. Les méthodes empiriques basées sur des extrapolations et des simplifications sont souvent utilisées pour prédire le bruit de combustion des moteurs aéronautiques. De nombreuses analogies acoustiques ont également été dérivées à partir de Lighthill. Les travaux de cette thèse proposent d'étudier le bruit de combustion provenant d'un moteur d'avion à l'aide d'une chaine de calcul traitant différents modules de la génération du bruit de combustion à sa propagation en champ lointain. Ils mettent en évidence l'importance du bruit de combustion pour différents points de fonctionnement. Les mécanismes générateurs du bruit seront identifiés dans la chambre de combustion. Le rôle de la turbine en tant qu'atténuateur le bruit et générateur de bruit indirect sera évalué ainsi que la propagation en champ lointain en considérant des milieux inhomogènes. Enfin, uns stratégie alternative sera également proposée afin de considérer l'interaction entre le bruit de combustion et le bruit de jet. Pour se faire des LES de jet forcé par le bruit de combustion seront réalisées. Une nouvelle approche sera proposée à partir de ces résultats qui semblent montrer que le bruit de combustion a un impact sur la turbulence du jet. / Since the introduction of jet engine for aircraft propulsion in the 1950's, acoustics has become of great interest to the engine industry. While the initial turbojets were jet noise dominated, the introduction of turbofan engine in the 1960's gave relief in jet noise, but introduced fan noise. In the 1970's, with advanced noise reduction design features which provided a major reduction in aircraft noise, combustion noise became an interrogation. Indeed, more restrictive noise regulations could require that noise from the fan and jet be reduced to the point where combustion noise reduction may be required. Moreover, burner designs is controlled solely by the restriction of chemical pollutants produced by combustion, efficiency and consumption. The impact of these new concepts on combustion noise is not a strong constraint for design. Before considering to reduce combustion noise, it is necessary to first understand the different mechanisms. However, proposing a prediction method for combustion noise is not an easy task due to the multiple physical interactions involved during the combustion processes. Many experiments exist to evaluate the combustion noise from flames or combustion test rig. However, only a few include the complete propagation path of combustion noise within an engine device as it is difficult to isolate this acoustic source from the noise of the other engine modules. Empirical methods based on extrapolations and simplifications are often used for the prediction of combustion noise within modern aero-engines. Numerous acoustic analogies have also been derived from Lighthill. The work of this thesis proposes to study the combustion noise coming from an aircraft engine using a computational chain treating different modules from the generation of combustion noise to its propagation in far field. The importance of combustion noise for different operating points is highlighted. The noise-generating mechanisms will be identified in the combustion chamber. The role of the turbine as a noise attenuator and indirect noise generator will be evaluated as well as the far-field propagation considering inhomogeneous fields. Finally, an alternative strategy will also be proposed in order to consider the interaction between combustion noise and jet noise. To do so, LES of jet flow forced with combustion noise will be performed. A new approach will be proposed based on these results which seem to show that the combustion noise has an impact on the turbulence of the jet.

Page generated in 0.1703 seconds