• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • Tagged with
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 10
  • 10
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Attitudes and Coalitions in Brownfield Redevelopment and Environmental Management

Walker, Sean January 2008 (has links)
Conflict analysis tools are applied to brownfield negotiations in order to investigate the impacts of coalition formation and a decision maker’s (DM’s) attitudes upon the successful resolution of brownfield disputes. The concepts of attitudes within the Graph Model for Conflict Resolution (GMCR) is defined and subsequently are used, along with coalition analysis methods, to examine the redevelopment of the Kaufman Lofts property and the resolution of a post-development dispute involving Eaton’s Lofts, both located in downtown Kitchener, Ontario, Canada. Within the model of the Kaufman Lofts redevelopment, the project is broken down into three connected project conflicts: property acquisition, remediation selection and redevelopment; with the graph model applied to all three conflict nodes. The application of attitudes shows the impact of cooperation between local governments and private developers in the formation of a coalition that mutually benefits all parties. Coalition analysis, applied to the redevelopment selection conflict between Heritage Kitchener and the private developer in the Kaufman Lofts project, illustrates the importance of close collaboration between the local government and the developer. Systems methodologies implemented here for the examination of brownfield redevelopments are examined and contrasted with the economic and environmental tools commonly used in the redevelopment industry. Furthermore, coalition formation within GMCR is used to examine the negotiation of the Kyoto Protocol, to demonstrate that formal conflict resolution methods can be utilized in other areas of environmental management.
2

Attitudes and Coalitions in Brownfield Redevelopment and Environmental Management

Walker, Sean January 2008 (has links)
Conflict analysis tools are applied to brownfield negotiations in order to investigate the impacts of coalition formation and a decision maker’s (DM’s) attitudes upon the successful resolution of brownfield disputes. The concepts of attitudes within the Graph Model for Conflict Resolution (GMCR) is defined and subsequently are used, along with coalition analysis methods, to examine the redevelopment of the Kaufman Lofts property and the resolution of a post-development dispute involving Eaton’s Lofts, both located in downtown Kitchener, Ontario, Canada. Within the model of the Kaufman Lofts redevelopment, the project is broken down into three connected project conflicts: property acquisition, remediation selection and redevelopment; with the graph model applied to all three conflict nodes. The application of attitudes shows the impact of cooperation between local governments and private developers in the formation of a coalition that mutually benefits all parties. Coalition analysis, applied to the redevelopment selection conflict between Heritage Kitchener and the private developer in the Kaufman Lofts project, illustrates the importance of close collaboration between the local government and the developer. Systems methodologies implemented here for the examination of brownfield redevelopments are examined and contrasted with the economic and environmental tools commonly used in the redevelopment industry. Furthermore, coalition formation within GMCR is used to examine the negotiation of the Kyoto Protocol, to demonstrate that formal conflict resolution methods can be utilized in other areas of environmental management.
3

Conflicting Attitudes in Environmental Management and Brownfield Redevelopment

Walker, Sean 07 May 2012 (has links)
An enhanced attitudes methodology within the framework of the Graph Model for Conflict Resolution (GMCR) is developed and applied to a range of environmental disputes, including a sustainable development conflict, an international climate change negotiation and a selection of brownfield conflicts over a proposed transfer of ownership. GMCR and the attitudes framework are first defined and then applied to a possible Sino-American climate negotiation over reductions in greenhouse gas emissions. A formal relationship between the attitudes framework and relative preferences is defined and associated mathematical theorems, which relate the moves and solution concepts used in both types of analysis, are proven. Significant extensions of the attitudes methodology are devised in the thesis. The first, dominating attitudes is a methodology by which the importance of a decision maker’s (DM’s) attitudes can be used to evaluate the strength of a given state stability. The second, COalitions and ATtitudes (COAT), is an expansion of both the attitudes and coalitions frameworks which allows one to analyze the impact of attitudes within a collaborative decision making setting. Finally, the matrix form of attitudes, is a mathematical methodology which allows complicated solution concepts to be executed using matrix operations and thus make attitudes more adaptable to a coding environment. When applied to environmental management conflicts, these innovative expansions of the attitudes framework illustrate the importance of cooperation and diplomacy in environmental conflict resolution.
4

Conflicting Attitudes in Environmental Management and Brownfield Redevelopment

Walker, Sean 07 May 2012 (has links)
An enhanced attitudes methodology within the framework of the Graph Model for Conflict Resolution (GMCR) is developed and applied to a range of environmental disputes, including a sustainable development conflict, an international climate change negotiation and a selection of brownfield conflicts over a proposed transfer of ownership. GMCR and the attitudes framework are first defined and then applied to a possible Sino-American climate negotiation over reductions in greenhouse gas emissions. A formal relationship between the attitudes framework and relative preferences is defined and associated mathematical theorems, which relate the moves and solution concepts used in both types of analysis, are proven. Significant extensions of the attitudes methodology are devised in the thesis. The first, dominating attitudes is a methodology by which the importance of a decision maker’s (DM’s) attitudes can be used to evaluate the strength of a given state stability. The second, COalitions and ATtitudes (COAT), is an expansion of both the attitudes and coalitions frameworks which allows one to analyze the impact of attitudes within a collaborative decision making setting. Finally, the matrix form of attitudes, is a mathematical methodology which allows complicated solution concepts to be executed using matrix operations and thus make attitudes more adaptable to a coding environment. When applied to environmental management conflicts, these innovative expansions of the attitudes framework illustrate the importance of cooperation and diplomacy in environmental conflict resolution.
5

Emotion, Perception and Strategy in Conflict Analysis and Resolution

Obeidi, Amer January 2006 (has links)
Theoretical procedures are developed to account for the effect of emotion and perception in strategic conflict. The <em>possibility principle</em> facilitates modeling the effects of emotions on future scenarios contemplated by decision makers; <em>perceptual graph models</em> and a <em>graph model system</em> permit the decision makers (DMs) to experience and view the conflict independently; and <em>perceptual stability analysis</em>, which is based on individual- and meta-stability analysis techniques, is employed in analyzing graph model systems when the DMs have inconsistent perceptions. These developments improve the methodology of the Graph Model for Conflict Resolution by reconciling emotion, perception, and strategy to make predictions consistent with the actual unfolding of events. <br /><br /> Current research in neuroscience suggests that emotions are a necessary component of cognitive processes such as memory, attention, and reasoning. The somatic marker hypothesis, for example, holds that feelings are necessary to reasoning, especially during social interactions (Damasio, 1994, 2003). Somatic markers are memories of past emotions: we use them to predict future outcomes. To incorporate the effect of emotion in conflict, the underlying principle of Damasio?s hypothesis is used in developing the possibility principle, which significantly expands the paradigm of the Graph Model for Conflict Resolution of Fang, Hipel, and Kilgour (1993). <br /><br /> State identification is a crucial step in determining future scenarios for DMs. The possibility principle is integrated into the modeling stage of the Graph Model by refining the method of determining feasible states. The possibility principle enables analysts and DMs to include emotion in a conflict model, without sacrificing the parsimonious design of the Graph Model methodology, by focusing attention on two subsets of the set of feasible states: <em>hidden</em> and <em>potential</em> states. Hidden states are logically valid, feasible states that are invisible because of the presence of negative emotions such as anger and fear; potential states are logically valid, feasible states that are invisible because of missing positive emotions. Dissipating negative emotions will make the hidden states visible, while expressing the appropriate positive emotions will make the potential states visible. The possibility principle has been applied to a number of real world conflicts. In all cases, eliminating logically valid states not envisioned by any DM simplifies a conflict model substantially, expedites the analysis, and makes it an intuitive and a realistic description of the DMs' conceptualizations of the conflict. <br /><br /> A fundamental principle of the Graph Model methodology is that all DMs' directed graphs must have the same set of feasible states, which are integrated into a <em>standard</em> graph model. The possibility principle may modify the set of feasible states perceived by each DM according to his or her emotion, making it impossible to construct a single standard graph model. When logically valid states are no longer achievable for one or more DMs due to emotions, the apprehension of conflict becomes inconsistent, and resolution may become difficult to predict. Therefore, reconciling emotion and strategy requires that different apprehensions of the underlying decision problem be permitted, which can be accomplished using a perceptual graph model for each DM. A perceptual graph model inherits its primitive ingredients from a standard graph model, but reflects a DM's emotion and perception with no assumption of complete knowledge of other DMs' perceptions. <br /><br /> Each DM's perceptual graph model constitutes a complete standard graph model. Hence, conclusions drawn from a perceptual graph model provide a limited view of equilibria and predicted resolutions. A graph model system, which consists of a list of DMs' perceptual graph models, is defined to reconcile perceptions while facilitating conclusions that reflect each DM's viewpoint. However, since a DM may or may not be aware that other graph models differ from his or her own, different variants of graph model systems are required to describe conflicts. Each variant of graph model system corresponds to a configuration of awareness, which is a set of ordered combinations of DMs' viewpoints. <br /><br /> Perceptual stability analysis is a new procedure that applies to graph model systems. Its objective is to help an <em>outside</em> analyst predict possible resolutions, and gauge the robustness and sustainability of these predictions. Perceptual stability analysis takes a two-phase approach. In Phase 1, the stability of each state in each perceptual graph model is assessed from the point of view of the owner of the model, for each DM in the model, using standard or perceptual solution concepts, depending on the owner's awareness of others' perceptions. (In this research, only perceptual solution concepts for the 2-decision maker case are developed. ) In Phase 2, meta-stability analysis is employed to consolidate the stability assessments of a state in all perceptual graph models and across all variants of awareness. Distinctive modes of equilibria are defined, which reflect incompatibilities in DMs' perceptions and viewpoints but nonetheless provide important insights into possible resolutions of conflict. <br /><br /> The possibility principle and perceptual stability analysis are integrative techniques that can be used as a basis for empathetically studying the interaction of emotion and reasoning in the context of strategic conflict. In general, these new techniques expand current modeling and analysis capabilities, thereby facilitating realistic, descriptive models without exacting too great a cost in modeling complexity. In particular, these two theoretical advances enhance the applicability of the Graph Model for Conflict Resolution to real-world disputes by integrating emotion and perception, common ingredients in almost all conflicts. <br /><br /> To demonstrate that the new developments are practical, two illustrative applications to real-world conflicts are presented: the US-North Korea conflict and the confrontation between Russia and Chechen Rebels. In both cases, the analysis yields new strategic insights and improved advice.
6

Preference Elicitation in the Graph Model for Conflict Resolution

Ke, Yi January 2008 (has links)
Flexible approaches for eliciting preferences of decision makers involved in a conflict are developed along with applications to real-world disputes. More specifically, two multiple criteria decision making approaches are proposed for capturing the relative preferences of a decision maker participating in a conflict situation. A case study in logistics concerned with the conflict arising over the expansion of port facilities on the west coast of North America as well as a transportation negotiation dispute are used to illustrate how these approaches can be integrated with the Graph Model for Conflict Resolution, a practical conflict analysis methodology. Ascertaining the preferences of the decision makers taking part in a conflict constitutes a key element in the construction of a formal conflict model. In practice, the relative preferences, which reflect each decision maker’s objectives or goals in a given situation, are rather difficult to obtain. The first method for preference elicitation is to integrate an Analytic Hierarchy Process (AHP) preference ranking method with the Graph Model for Conflict Resolution. The AHP approach is used to elicit relative preferences of decision makers, and this preference information is then fed into a graph model for further stability analyses. The case study of the Canadian west coast port congestion conflict is investigated using this integrated model. Another approach is based on a fuzzy multiple criteria out-ranking technique called ELECTRE III. It is also employed for ranking states or possible scenarios in a conflict from most to least preferred, with ties allowed, by the decision maker according to his or her own value system. The model is applied to a transportation negotiation dispute between the two key parties consisting of shippers and carriers.
7

Emotion, Perception and Strategy in Conflict Analysis and Resolution

Obeidi, Amer January 2006 (has links)
Theoretical procedures are developed to account for the effect of emotion and perception in strategic conflict. The <em>possibility principle</em> facilitates modeling the effects of emotions on future scenarios contemplated by decision makers; <em>perceptual graph models</em> and a <em>graph model system</em> permit the decision makers (DMs) to experience and view the conflict independently; and <em>perceptual stability analysis</em>, which is based on individual- and meta-stability analysis techniques, is employed in analyzing graph model systems when the DMs have inconsistent perceptions. These developments improve the methodology of the Graph Model for Conflict Resolution by reconciling emotion, perception, and strategy to make predictions consistent with the actual unfolding of events. <br /><br /> Current research in neuroscience suggests that emotions are a necessary component of cognitive processes such as memory, attention, and reasoning. The somatic marker hypothesis, for example, holds that feelings are necessary to reasoning, especially during social interactions (Damasio, 1994, 2003). Somatic markers are memories of past emotions: we use them to predict future outcomes. To incorporate the effect of emotion in conflict, the underlying principle of Damasio?s hypothesis is used in developing the possibility principle, which significantly expands the paradigm of the Graph Model for Conflict Resolution of Fang, Hipel, and Kilgour (1993). <br /><br /> State identification is a crucial step in determining future scenarios for DMs. The possibility principle is integrated into the modeling stage of the Graph Model by refining the method of determining feasible states. The possibility principle enables analysts and DMs to include emotion in a conflict model, without sacrificing the parsimonious design of the Graph Model methodology, by focusing attention on two subsets of the set of feasible states: <em>hidden</em> and <em>potential</em> states. Hidden states are logically valid, feasible states that are invisible because of the presence of negative emotions such as anger and fear; potential states are logically valid, feasible states that are invisible because of missing positive emotions. Dissipating negative emotions will make the hidden states visible, while expressing the appropriate positive emotions will make the potential states visible. The possibility principle has been applied to a number of real world conflicts. In all cases, eliminating logically valid states not envisioned by any DM simplifies a conflict model substantially, expedites the analysis, and makes it an intuitive and a realistic description of the DMs' conceptualizations of the conflict. <br /><br /> A fundamental principle of the Graph Model methodology is that all DMs' directed graphs must have the same set of feasible states, which are integrated into a <em>standard</em> graph model. The possibility principle may modify the set of feasible states perceived by each DM according to his or her emotion, making it impossible to construct a single standard graph model. When logically valid states are no longer achievable for one or more DMs due to emotions, the apprehension of conflict becomes inconsistent, and resolution may become difficult to predict. Therefore, reconciling emotion and strategy requires that different apprehensions of the underlying decision problem be permitted, which can be accomplished using a perceptual graph model for each DM. A perceptual graph model inherits its primitive ingredients from a standard graph model, but reflects a DM's emotion and perception with no assumption of complete knowledge of other DMs' perceptions. <br /><br /> Each DM's perceptual graph model constitutes a complete standard graph model. Hence, conclusions drawn from a perceptual graph model provide a limited view of equilibria and predicted resolutions. A graph model system, which consists of a list of DMs' perceptual graph models, is defined to reconcile perceptions while facilitating conclusions that reflect each DM's viewpoint. However, since a DM may or may not be aware that other graph models differ from his or her own, different variants of graph model systems are required to describe conflicts. Each variant of graph model system corresponds to a configuration of awareness, which is a set of ordered combinations of DMs' viewpoints. <br /><br /> Perceptual stability analysis is a new procedure that applies to graph model systems. Its objective is to help an <em>outside</em> analyst predict possible resolutions, and gauge the robustness and sustainability of these predictions. Perceptual stability analysis takes a two-phase approach. In Phase 1, the stability of each state in each perceptual graph model is assessed from the point of view of the owner of the model, for each DM in the model, using standard or perceptual solution concepts, depending on the owner's awareness of others' perceptions. (In this research, only perceptual solution concepts for the 2-decision maker case are developed. ) In Phase 2, meta-stability analysis is employed to consolidate the stability assessments of a state in all perceptual graph models and across all variants of awareness. Distinctive modes of equilibria are defined, which reflect incompatibilities in DMs' perceptions and viewpoints but nonetheless provide important insights into possible resolutions of conflict. <br /><br /> The possibility principle and perceptual stability analysis are integrative techniques that can be used as a basis for empathetically studying the interaction of emotion and reasoning in the context of strategic conflict. In general, these new techniques expand current modeling and analysis capabilities, thereby facilitating realistic, descriptive models without exacting too great a cost in modeling complexity. In particular, these two theoretical advances enhance the applicability of the Graph Model for Conflict Resolution to real-world disputes by integrating emotion and perception, common ingredients in almost all conflicts. <br /><br /> To demonstrate that the new developments are practical, two illustrative applications to real-world conflicts are presented: the US-North Korea conflict and the confrontation between Russia and Chechen Rebels. In both cases, the analysis yields new strategic insights and improved advice.
8

Preference Elicitation in the Graph Model for Conflict Resolution

Ke, Yi January 2008 (has links)
Flexible approaches for eliciting preferences of decision makers involved in a conflict are developed along with applications to real-world disputes. More specifically, two multiple criteria decision making approaches are proposed for capturing the relative preferences of a decision maker participating in a conflict situation. A case study in logistics concerned with the conflict arising over the expansion of port facilities on the west coast of North America as well as a transportation negotiation dispute are used to illustrate how these approaches can be integrated with the Graph Model for Conflict Resolution, a practical conflict analysis methodology. Ascertaining the preferences of the decision makers taking part in a conflict constitutes a key element in the construction of a formal conflict model. In practice, the relative preferences, which reflect each decision maker’s objectives or goals in a given situation, are rather difficult to obtain. The first method for preference elicitation is to integrate an Analytic Hierarchy Process (AHP) preference ranking method with the Graph Model for Conflict Resolution. The AHP approach is used to elicit relative preferences of decision makers, and this preference information is then fed into a graph model for further stability analyses. The case study of the Canadian west coast port congestion conflict is investigated using this integrated model. Another approach is based on a fuzzy multiple criteria out-ranking technique called ELECTRE III. It is also employed for ranking states or possible scenarios in a conflict from most to least preferred, with ties allowed, by the decision maker according to his or her own value system. The model is applied to a transportation negotiation dispute between the two key parties consisting of shippers and carriers.
9

A Multi-Stage Graph Model Analysis for the International Toxic Waste Disposal Conflict

Hu, Kaixian 22 May 2008 (has links)
A generic conflict model is developed to analyze international toxic waste disposal issues, and then, to provide feasible strategic resolutions for this serious environmental dispute. With the rapid growth of the global economy, toxic waste traffic from the advanced to developing nations has become a serious side effect of this globalization. The illegal transboundary movement of toxic wastes not only aggravates the burden on the poorer nations, but also negatively impacts the worldwide environment. In this thesis, the ongoing toxic waste disputes are divided into two stages consisting of the dumping prevention and dispute resolution stages. The analyses based on the methodology of Graph Model for Conflict Resolution are used in both stages in order to grasp the structure and implications of the conflict from a strategic viewpoint. The in-depth modeling of the toxic waste dumping disputes, which consist of historical and generic situations, specifies the involved parties and their options. By synthesizing the economic, political and legal factors, the relative preferences for each party can be determined. The Graphical User Interface (GUI) of the Decision Support System (DSS) GMCR II simplifies the processing of calculations. The analytical research furnishes investigators or other interested parties with possible resolutions for the disputes arising from an international waste dumping event. Sensitivity analyses are also conducted to provide a comprehensive understanding of the different situations that may occur in real-world cases. The case study of the Ivory Coast waste dumping controversy is used to demonstrate how to practically implement the generic multi-stage graph model.
10

A Multi-Stage Graph Model Analysis for the International Toxic Waste Disposal Conflict

Hu, Kaixian 22 May 2008 (has links)
A generic conflict model is developed to analyze international toxic waste disposal issues, and then, to provide feasible strategic resolutions for this serious environmental dispute. With the rapid growth of the global economy, toxic waste traffic from the advanced to developing nations has become a serious side effect of this globalization. The illegal transboundary movement of toxic wastes not only aggravates the burden on the poorer nations, but also negatively impacts the worldwide environment. In this thesis, the ongoing toxic waste disputes are divided into two stages consisting of the dumping prevention and dispute resolution stages. The analyses based on the methodology of Graph Model for Conflict Resolution are used in both stages in order to grasp the structure and implications of the conflict from a strategic viewpoint. The in-depth modeling of the toxic waste dumping disputes, which consist of historical and generic situations, specifies the involved parties and their options. By synthesizing the economic, political and legal factors, the relative preferences for each party can be determined. The Graphical User Interface (GUI) of the Decision Support System (DSS) GMCR II simplifies the processing of calculations. The analytical research furnishes investigators or other interested parties with possible resolutions for the disputes arising from an international waste dumping event. Sensitivity analyses are also conducted to provide a comprehensive understanding of the different situations that may occur in real-world cases. The case study of the Ivory Coast waste dumping controversy is used to demonstrate how to practically implement the generic multi-stage graph model.

Page generated in 0.1416 seconds