• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electrical characterization of thermally reduced graphite oxide /

Jewell, Ira. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2011. / Printout. Includes bibliographical references (leaves 95-102). Also available on the World Wide Web.
2

Characteristics of graphitic films for carbon based magnetism and electronics

Hong, Jeongmin January 2009 (has links)
Thesis (Ph. D.)--University of California, Riverside, 2009. / Includes abstract. Available via ProQuest Digital Dissertations. Title from first page of PDF file (viewed March 19, 2010). Includes bibliographical references. Also issued in print.
3

Electrowetting and electrodeposition on graphitic surfaces

Lomax, Deborah January 2016 (has links)
Graphite and graphene electrodes are used to study two electrochemical processes: the decoration of these electrodes with Au metallic nanoparticles through the use of electrodeposition, and electrowetting, the potential-dependent change in hydrophobicity of a surface. Electrodeposition provides a useful route to electrode functionalisation, in particular to combine the enhanced properties of metallic nanoparticles with the advantageous features of carbon materials. A combination of cyclic voltammetry, chronoamperometry, and both ex situ and in situ atomic force microscopy are used to deduce the mechanism of Au electrodeposition on graphite and graphene. Notably, the mechanism of Au nanoparticle formation cannot be deduced from simple voltammetry alone, and the spontaneous formation of Au within the timescale of the electrodeposition experiment is confirmed. Electrowetting is a uniquely responsive method to manipulate the wetting properties of an electrode. However, a dielectric coating is commonly required to protect the surface from electrolysis, which in turn further increases the potentials needed to perform electrowetting. In contrast to this, here it is shown that bare graphite and graphene electrodes support electrowetting without the disadvantages of a dielectric coating, allowing an unprecedented combination of performance and efficiency. Furthermore, the ideal behaviour this system demonstrates is implemented as a platform to study electrowetting itself. The influence of electrolyte composition, surface defects and electrode-blocking dielectric-like films are investigated to determine the factors that impede electrowetting, a key step to understanding the phenomenon that is normally hindered by the use of the dielectric.
4

Graphène dans des liquides ioniques : interactions aux interfaces, exfoliation, stabilisation / Graphene in ionic liquids : interactions at interfaces, exfoliation, stabilization

Bordes, Emilie 11 December 2017 (has links)
L'exfoliation en phase liquide du graphite est l'une des méthodes les plus prometteuses pour augmenter la production et la disponibilité commerciale du graphène. Le processus d'exfoliation peut être décrit, de manière conceptuelle, en quatre étapes: le contact du graphite avec le liquide, l'intercalation du solvant entre les feuillets de graphène, la dispersion du matériau à deux dimension et sa stabilisation en phase liquide. Comme les liquides ioniques peuvent être facilement obtenus avec différentes structures moléculaires et donc des propriétés physicochimiques modulables, ils ont été utilisés dans cette thèse comme milieux liquides pour l'exfoliation du graphite. Notre objectif est d'optimiser l'exfoliation du graphite à travers la compréhension des mécanismes moléculaires et des interactions impliquées dans chaque étape du processus. Les énergies interfaciale graphite-liquide ont été calculées à partir de tensions de surface et d'angles de contact mesurées entre des liquides ioniques et du graphite pour déterminer l'affinité de différents liquides à la surface du graphite. Afin d'étudier cette interface liquide - solide, des simulations en dynamique moléculaire ont été menées pour analyser l'organisation des liquides ioniques à la surface du graphite. De même, l'énergie libre nécessaire pour créer des cavités au sein du liquide ionique a été calculée.Des simulations moléculaires ont également été réalisées pour modéliser l'exfoliation d'un feuillet de graphène à partir de graphite en apportant une vue microscopique de l'intercalation des molécules de solvant. L'énergie nécessaire à l'exfoliation a pu être calculée en présence de différents liquides. Des composés polyaromatiques ont été considérés comme des modèles pour le graphène car ils peuvent être facilement obtenus purs, sans variabilité de structure, défauts ou groupes fonctionnels non contrôlés. Les enthalpies de dissolution du naphtalène, anthracène et pyrène dans différents liquides ioniques ont été mesurées par calorimétrie en solution et liées à leur solubilité. L'organisation des ions autour de ces composés modèles a été étudiée par simulation moléculaire et spectroscopie Infra-Rouge.Après l'exfoliation, les échantillons de graphène en suspension dans différents liquides ioniques ont été caractérisés expérimentalement en termes de taille de feuillets (microscopie électronique à transmission et microscopie à force atomique), nombre de couches de graphène (microscopie à force atomique, spectroscopie Raman), concentration totale (spectroscopie UV-visible) et pureté du matériau exfolié (spectroscopie de photoélectrons~X). Vingt liquides ioniques différents à base de cations imidazolium, pyrrolidinium et ammonium et d'anions bis (trifluorométhylsulfonyl)imide, triflate, dicyanamide, tricyanométhanide et méthylsulfate ont été testés. Les interactions moléculaires permettant d'établir de règles de conception pour les liquides ioniques capables d'exfolier les matériaux carbonés ont été identifiées. Le cation pyrrolidinium a montré des résultats prometteurs dans toutes les étapes du processus d'exfoliation, par rapport au cation imidazolium ou ammonium. La sélection d'un grand anion flexible a réduit l'énergie interfaciale avec le graphite, dispersé les nanocarbones en augmentant l'entropie du système et stabilisé le graphite exfolié en plus grande quantité. Un petit anion tel que le triflate semble être favorable à l'obtention de graphène, même si la taille des couches et leur quantité sont réduites. Un liquide ionique ayant une partie apolaire importante facilitera l'insertion et la dispersion du nanomatériau de carbone. Pour la stabilisation du graphite, les interactions alkyle-π et π- π sont décisives. / The liquid-phase exfoliation of graphite is one of the most promising methods to increase production and commercial availability of graphene. The exfoliation process can be conceptually described in four steps: the contact of the graphite with liquid, the intercalation of the solvent between layers, the dispersion of the two dimensional material, and its stabilization in the liquid-phase. Because ionic liquids can be easily obtained with chosen molecular structures and tunable physicochemical properties, they were used in this study as liquid media for the exfoliation of graphite. Our aim is to optimize the exfoliation of graphite through the understanding of the molecular mechanisms and of the interactions involved in each step of the process.The liquid-graphite interfacial energies from measured surface tensions and contact angles, between ionic liquids and pristine graphite surface, were used to determine the affinity of different liquids at the surface of graphite. In order to investigate this interface, molecular dynamics simulations were conducted to analyse the ordering of ionic liquids at the surface of graphite. The free energies necessary to create cavities inside the bulk ionic liquid have also been studied.Molecular simulations were also used to study the exfoliation of one graphene layer from a stack of graphite and hence provide a microscopic view of the intercalation of solvent molecules. The energies involved in the process have been calculated.Polyaromatic compounds were regarded as models for graphene as they can be easily obtained pure, without structure variability, defects or uncontrolled functional groups. Enthalpies of dissolution of polyaromatic hydrocarbons (naphthalene, anthracene and pyrene) in different ionic liquids were measured by solution calorimetry and related with their solubility. The ordering of the ions around this model compounds were studied by molecular simulation and spectroscopy Infra-Red.After exfoliation, samples of suspended graphene in different ionic liquids have been characterized experimentally in terms of flake size (using transmission electron microscopy and atomic force microscopy), number of layers (atomic force microscopy, spectroscopy Raman), total concentration (UV-visible spectroscopy) and purity of the exfoliated material (X-ray photoelectron spectrometry).Twenty different ionic liquids based on imidazolium, pyrrolidinium and ammonium cations and on bis(trifluoromethylsulfonyl)imide, triflate, dicyanamide, tricyanomethanide, and methyl sulfate have been tested. The molecular interactions have been identified thus allowing the establishment of design rules for ionic liquids capable of exfoliating carbon materials. The pyrrolidinium cation has shown promising results in all the steps of exfoliation process, compared to the imidazolium or ammonium cation. Selecting a large and flexible anion reduced the interfacial energy with graphite, dispersed the nanocarbons by increasing the entropy of the system and stabilized the exfoliated graphite in larger quantity. A small anion such as triflate appears to be favorable for obtaining graphene, whereas the size of the layers and their quantity is reduced. An ionic liquid having an important apolar portion will facilitate the insertion and dispersion of graphene layers. For the stabilization of graphite, the alkyl-π et π -π interactions are decisive.
5

Electron energy loss spectroscopy of graphene and boron nitride with impurities or defects in the transmission electron microscope

Pan, Cheng-Ta January 2014 (has links)
The two-dimensional material graphene possesses many impressive properties such asextraordinary carrier mobility, mechanical stiffness and optical transmittance. However,the properties of pristine graphene do not always complement the requirements of applications. Of particular interest, a band gap is needed for electronic logic devices. Recent research shows that using few-layer hexagonal boron nitride as a substrate for graphene-based electronic devices can open a band gap in graphene. Also, introducing impurities such as hydrogen atoms, transition metals or silicon atoms on or within graphene can control the electronic properties according to recent studies. Furthermore, ion irradiation is an alternative option to tailor the properties of graphene by introducing defects. In this thesis, pristine, impure or defective graphene and few-layer boron nitride were characterised by scanning transmission electron microscopy (STEM) and electron energy loss (EEL) spectroscopy. Through STEM and EEL spectroscopy, lattice structures and electronic properties of these two-dimensional materials could be investigated at the atomic scale. This thesis focuses on the frontier studies of theoretical and experimental EEL spectroscopy of graphene and few-layer boron nitride with impurities. In the EEL spectra of pristine graphene and boron nitride two prominent peaks were observed, which are attributed to the plasmon excitations of π- and π+σ-electrons. By introducing impurities such as hydrogen adatoms on graphene and substitutional oxygen and carbon atoms within single-layer boron nitride, our experimental and simulated EEL spectra show that their π-plasmon peaks are modified. The concentrations of these impurities were then evaluated via EEL spectra and atomic-resolution images. If other impurities, such as various transition metals and silicon atoms, are introduced on or within single-layer graphene, our simulated EEL spectra demonstrate that the geometry of these impurity clusters affects the π-plasmon peak in graphene and some impurities even enhance it. Finally, experiments on in-situ transmission electron microscopy and ex-situ STEM and Raman spectroscopy were conducted to investigate ion irradiated graphene. Many topological defects were, for the first time, observed in atomic-resolution STEM images of ion irradiated graphene. Simulated EEL spectra of defective graphene are also reported, which suggests that corrugations and dangling bonds in defects can modify out-of-plane EEL spectra and introduce intraband transitions, respectively.
6

Stabilitätsuntersuchungen zu interkalierten Metallatomen in sp2-hybridisiertem Kohlenstoff mittels Elektronenstrukturrechnungen

Dick, Daniel 24 June 2022 (has links)
Graphen und Graphit als Vertreter sp2-hybridisierter Kohlenstoffmaterialien weisen sehr gute elektronische Eigenschaften auf, die sich in vielen Fällen durch Adsorption oder Interkalation von Metallatomen weiter verbessern lassen. In dieser Arbeit wird die atomare Struktur von nickelinterkaliertem Graphit sowie von nickelbesetztem Mono- und Bilagen-Graphen und deren Stabiität mittels Dichtefunktionaltheorie berechnet und untereinander verglichen. Durch Untersuchung des Einflusses der Nickelatomdichte sowie von Anzahl und Abstand der Kohlenstofflagen werden verallgemeinerte Vorhersagen für Graphitmaterialien mit Nickelinterkalation und deren Verhalten bei externen Verspannungen möglich. Abschließend wird der Einfluss der Nickelatome auf die elektronischen Eigenschaften anhand der Bandstruktur untersucht. Aufgrund zusätzliche Bänder in der Nähe der Fermienergie kann eine Verbesserung des elektrischen Transportes angenommen werden.:Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis Symbolverzeichnis 1. Einleitung 2. Überblick zu Kohlenstoffmaterialien 2.1. Formen des Kohlenstoffs 2.2. Interkalation 2.3. Elektronische Eigenschaften 3. Dichtefunktionaltheorie 3.1. Motivation 3.2. Das Hohenberg-Kohn-Theorem 3.3. Berechnung der Elektronendichte 3.4. Abschätzung der Austausch-Korrelations-Energie 3.4.1. Lokale Dichtenäherung 3.4.2. Verallgemeinerten Gradientennäherung 4. Simulationsmethodik 4.1. Modellsystem 4.2. Software und Rechenparameter 5. Ergebnisse 5.1. Gleichgewichtspositionen 5.1.1. Nickelbesetztes Graphen 5.1.2. Interkalierte Systeme 5.1.3. Betrachtung höherer Nickeldichten 5.2. Einfluss des Lagenabstandes und Stabilitätsbetrachtungen 5.3. Elektronische Eigenschaften 5.3.1. Einfluss der geometrischen Struktur 5.3.2. Bandstruktur von nickelbesetztem Graphen 5.3.3. Bandstrukturen der interkalierten Systeme 6. Zusammenfassung und Ausblick A. Einfluss der Nickeldichte B. SCAN-Funktional und ebeneWellen C. Energielandschaften bei konstantem Lagenabstand D. Spineffekte in der Bandstruktur E. Fette Bandstruktur der weiteren Systeme Literaturverzeichnis Selbstständigkeitserklärung

Page generated in 0.0971 seconds