Spelling suggestions: "subject:"graphene oxide membrane"" "subject:"praphene oxide membrane""
1 |
Carbon Based Membranes for Molecular Separations / 炭素素材を基調とする膜の合成及び分子分離特性の研究HUANG, GUOJI 25 January 2021 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22895号 / 工博第4792号 / 新制||工||1749(附属図書館) / 京都大学大学院工学研究科分子工学専攻 / (主査)教授 SIVANIAH Easan, 教授 田中 庸裕, 教授 今堀 博 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
|
2 |
A fully spray-coated fuel cell membrane electrode assembly using Aquivion ionomer with a graphene oxide/cerium oxide interlayerBreitwieser, Matthias, Bayer, Thomas, Büchler, Andreas, Zengerle, Roland, Lyth, Stephen M., Thiele, Simon 27 October 2020 (has links)
A novel multilayer membrane electrode assembly (MEA) for polymer electrolyte membrane fuel cells (PEMFCs) is fabricated in this work, within a single spray-coating device. For the first time, direct membrane deposition is used to fabricate a PEMFC by spraying the short-side-chain ionomer Aquivion directly onto the gas diffusion electrodes. The fully sprayed MEA, with an Aquivion membrane 10 μm in thickness, achieved a high power density of 1.6 W/cm2 for H2/air operation at 300 kPaabs. This is one of the highest reported values for thin composite membranes operated in H2/air atmosphere. By the means of confocal laser scanning microscopy, individual carbon fibers from the gas diffusion layer are identified to penetrate through the micro porous layer (MPL), likely causing a low electrical cell resistance in the range of 150 Ω cm2 through the thin sprayed membranes. By spraying a 200 nm graphene oxide/cerium oxide (GO/CeO2) interlayer between two layers of Aquivion ionomer, the impact of the electrical short is eliminated and the hydrogen crossover current density is reduced to about 1 mA/cm2. The peak power density of the interlayer-containing MEA drops only by 10% compared to a pure Aquivion membrane of similar thickness.
|
Page generated in 0.0795 seconds