Spelling suggestions: "subject:"itinerating"" "subject:"ingratiating""
171 |
Physics and Applications of Interacting Magnetic Particles: Effect of Patterned TrapsPrikockis, Michael Vito 08 June 2016 (has links)
No description available.
|
172 |
Coupled Wave Analysis of Two-Dimensional Second Order Surface-Emitting Distributed Feedback LasersShen, Yangfei 18 May 2016 (has links)
No description available.
|
173 |
Embedding fiber Bragg grating sensors through ultrasonic additive manufacturingSchomer, John J. 08 August 2017 (has links)
No description available.
|
174 |
The warm-hot environment of the Milky WayWilliams, Rik Jackson 13 September 2006 (has links)
No description available.
|
175 |
Studies on interaction between light sensor protein PYP and its downstream protein PBP / 光受容タンパク質PYPと下流タンパク質PBPの相互作用に関する研究Kim, Suhyang 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23720号 / 理博第4810号 / 新制||理||1688(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 寺嶋 正秀, 教授 林 重彦, 教授 渡邊 一也 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
176 |
Automatic Measurement Setup for new Optical FPGA:sLundberg, Tommy, Nee, Daniel January 2019 (has links)
Aiming to reduce research and development times in the field of silicon photonics, this paper presents a method for automatized device testing. Focus lies on automatic optical coupling between the grating couplers on a chip and optical fibers and efficient switching between devices when performing laboratory tests on silicon photonic chips. A lab setup with high precision motorized stages has been built and an algorithm for finding the best optical coupling between fiber and chip, based on the light distribution properties of the fiber, has been implemented. The project results shows that, while these methods have the potential of considerable time savings, further testing is needed.
|
177 |
Nonlinear optical studies of dye-doped nematic liquid crystalsKlysubun, Prapong 03 April 2002 (has links)
Nematic liquid crystals possess large optical nonlinearities owing to their large refractive index anisotropy coupled with the collective molecular reorientation. Doping absorbing dyes into liquid crystals increases their optical responses significantly due to increased absorption in the visible region, absorption-induced intermolecular torque, cis-trans photoisomerization, and other guest-host effects. The guest-host mixtures can be employed in display applications, optical storage devices, and others. In this dissertation, nonlinear optical studies were carried out on dye-doped nematic liquid crystal cells. The main objectives of the studies were to distinguish and characterize the several processes that can lead to the formation of dynamic gratings of different types in the samples, and to study the photorefractive and the orientational responses of these samples. Furthermore, we tried to explain and model the dynamical behaviors of the observed grating formations.
The experimental techniques employed in this study include asymmetric two-beam coupling, forced light scattering, and polarization holographic method. The asymmetric two-beam coupling experiments revealed that the induced grating was a photorefractive phase grating created by the nematic director reorientation within the plane of incidence. The dynamics of the beam coupling showed that two different mechanisms with different temporal responses were involved. The grating translation technique identified both gratings as pure photorefractive index gratings with phase shifts of ~ p/2 between the grating and the interference pattern. In addition, the dynamical behavior of the grating formation, obtained from forced light scattering experiments, also exhibited a two-time constant response. The dynamical behaviors of the build-up and decay of the photocurrent were investigated. The two dynamics exhibited both a two-time constant behavior, suggesting that the origin of the two-time constant dynamics observed in the two-beam coupling and the forced light scattering experiments resides in the process of photo-charge generation.
The photorefractive gain coefficients were found to be in the range of 100 – 400 cm-1. The values of the nonlinear optical Kerr index (~ 0.08 cm2/W) measured in samples with certain dye/liquid crystal combinations are higher than what has been observed in other dye-doped nematics and other liquid crystal/polymer systems. All the samples showed a threshold behavior with respect to the magnitude of the applied electric field. This threshold behavior was observed both in forced light scattering experiments and polarization holographic experiments. We believe that the origin of this threshold lies in the process of photogeneration, which was found to exhibit the same threshold behavior at the same value of the applied voltage. An asymmetry of the photorefractive gain with respect to the direction of the applied electric field was observed in samples with high dye concentration. This was attributed to the beam fanning effect, which has also been observed in other high-gain photorefractive materials.
Polarization holographic measurements showed that the dye enhancement effect is primarily due to the intermolecular interaction between the dye molecules and the liquid crystal host, and that the trans-cis photoisomerization plays a lesser role. The photoinduced orientational response was also studied using polarization holographic experiments. A number of observations confirmed that the birefringent grating is due to the nematic director reorientation within the plane of incidence, under the combined effect of the applied electric field and the optical field. The diffraction efficiency was found to depend linearly on the writing beam power, while the dependence of the self-diffraction efficiency on the writing beam power roughly assumes a cubic relationship. The dynamical behavior of the birefringent grating formation was investigated. The build-up dynamics was found to be best modeled as a double-time constant response, while the decay is best fitted by a single exponential. The response of the samples to an oscillating electric field was studied as a function of the modulation frequency. Very interesting and reproducible dynamics was observed, revealing the complex dynamical response of the liquid crystal director to the magnitude and rate of change of an applied electric field. The small signal response was also measured, but did not reveal any sign of a resonance behavior.
The conductivity and the photoconductivity of the samples were measured. The relationship between the measured current and the applied voltage was found to be cubic at low applied voltage, and to become linear at higher applied voltage. We could explain this behavior using a double-charge-injection-in-a-weak-electrolyte model, but this is only one of the possible mechanisms that could explain this behavior. The photocurrent was found to increase linearly with the illumination power, which indicates that the charge carrier recombination rate is proportional to the carrier density. The measured electrical conductivity was found to be proportional to the square root of the dye concentration, confirming the validity of the proposed charge-injection model. / Ph. D.
|
178 |
Nonlinear System Identification of Physical Parameters for Damage Prognosis and Localization in StructuresBordonaro, Giancarlo Giuseppe 04 January 2010 (has links)
The understanding of how structural components endure loads, in particular variable loads, is that these components gradually, over some period of time depending on the nature of the loading and the material, develop a microcrack. After some additional time and loading, the microcrack grows to a size that might be detected. Beyond that point, the microcrack propagates in a manner that can be reliably predicted by computer analysis codes. Consequently, one can define different stages for the life of a structural component. These are: 1) the period prior to the formation of a microcrack, 2) the period of microcrack growth, and finally 3) the period of crack growth. To date, structural health monitoring approaches that seek to detect cracks offer no insight into the extent of deterioration occurring in the initial stage that is a precursor to the formation of the microcrack or its growth. However, an approach that would facilitate monitoring the extent of the deterioration that takes place during this stage promises to improve life prediction capabilities of structural components.
The challenge, thus, is to develop quantitative assessment of damage accumulation from the earliest stages of the fatigue process and to provide a structure's signature that is dependent of the damage stage. One such signature is the structure's response to forced excitation. The realization of such a goal would help in advancing structural health monitoring procedures using interrogative system identification techniques and determine sensitivities of physical parameters to damage. Additionally, vibration-based spectral quantities are related to physical properties of the structure under test.
In this thesis, nonlinear response to parametric excitation is exploited for nonlinear system identification of metallic and composite beam-mass systems before damage initiation through intermediate states of damage progression to failure. Parametric identification procedure combines linear and higher order spectral analysis of vibration measurements and perturbation techniques for the derivation of the approximate solution of the system nonlinear governing differential equation. The possibility of using optical Fiber Bragg Grating sensors technology for damage localization is also assessed. Spectral moments and quantities obtained from fiber optic strain measurements are evaluated near and away from cracks to assess the relation between these moments and cracks.
Variations in parameters representing natural frequency, damping and effective nonlinearities for different levels of progressive damage in a beam-mass system have been determined. Their percentage variations have been quantified to establish their sensitivities to damage initiation. The results show that damping and effective nonlinearity parameters are more sensitive to damage conditions than the natural frequency of the first mode. Crack localization is assessed by means of optical fiber technology for a composite beam-mass system. The results show that noise levels in fiber optic signals are high in comparison to strain gage signals. Of particular interest, however, is the observation that the nonlinear response is more pronounced near the cracks than away from them. / Ph. D.
|
179 |
Intrinsic Fabry-Perot Interferometric Fiber Sensor Based on Ultra-Short Bragg Gratings for Quasi-Distributed Strain and Temperature MeasurementsWang, Zhuang 02 February 2007 (has links)
The health monitoring of smart structures in civil engineering is becoming more and more important as in-situ structural monitoring would greatly reduce structure life-cycle costs and improve reliability. The distributed strain and temperature sensing is highly desired in large structures where strain and temperature at over thousand points need to be measured simultaneously. It is difficult to carry out this task using conventional electrical strain sensors. Fiber optic sensors provide an excellent opportunity to fulfill this need due to their capability to multiplex many sensors along a single fiber cable. Numerous research studies have been conducted in past decades to increase the number of sensors to be multiplexed in a distributed sensor network.
This dissertation presents detailed research work on the analysis, design, fabrication, testing, and evaluation of an intrinsic Fabry-Perot fiber optic sensor for quasi-distributed strain and temperature measurements. The sensor is based on two ultra-short and broadband reflection fiber Bragg gratings. One distinct feature of this sensor is its ultra low optical insertion loss, which allows a significant increase in the sensor multiplexing capability. Using a simple integrated sensor interrogation unit and an optical spectrum based signal processing algorithm, many sensors can be interrogated along a single optical fiber with high accuracy, high resolution and large dynamic range. Based on the experimental results and theoretical analysis, it is expected that more than 500 sensors can be multiplexed with little crosstalk using a frequency-division multiplexing technology. With this research, it is possible to build an easy fabrication, robust, high sensitivity and quasi-distributed fiber optic sensor network that can be operated reliably even in harsh environments or extended structures.
This research was supported in part by U.S. National Science Foundation under grant CMS-0427951. / Ph. D.
|
180 |
Real-Time Signal Processing and Hardware Development for a Wavelength Modulated Optical Fiber Sensor SystemMusa, Shah M. 09 September 1997 (has links)
The use of optical fiber sensors is increasing widely in civil, industrial, and military applications mainly due to their, (a) miniature size, (b) high sensitivity, (c) immunity from electro-magnetic interference, (d) resistance to harsh environments, (e) remote signal processing ability, and, (f) multiplexing capabilities. Because of these advantages a variety of optical fiber sensing techniques have evolved over the years having potentials for myriad of applications. One very challenging job, for any of these optical fiber sensing techniques, is to implement a stand alone system with the design and development of all the signal processing models along with the necessary hardware, firmware, and software satisfying the real-time signal processing requirements. In this work we first develop the equations for the system model of the wavelength modulated extrinsic Fabry-Perot interferometric (EFPI) optical fiber sensor, and then design and build all the hardware and software necessary to implement a stand-a / Ph. D.
|
Page generated in 0.049 seconds