• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 5
  • 3
  • 3
  • 1
  • Tagged with
  • 125
  • 125
  • 91
  • 65
  • 64
  • 61
  • 58
  • 58
  • 53
  • 30
  • 28
  • 26
  • 23
  • 20
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Structural and thermogravimetric studies of alkali metal amides and imides

Lowton, Rebecca L. January 1999 (has links)
This work presents an in-depth study of the crystal structures and hydrogen sorption potential of the Li - N - H and Li - Na - N - H systems. The structures of the materials have been studied using X-ray and neutron diffraction, Raman spectroscopy and inelastic neutron scattering. The behavior of the materials during heating was studied using variable temperature X-ray diffraction, intelligent gravimetric analysis in conjunction with neutron diffraction, intelligent gravimetric analysis combined with mass spectrometry and differential scanning calorimetry. The role of cation disorder in the Li - N - H (D) system has been explored, indicating that crystallographic ordering of the Li<sup>+</sup> ions within lithium amide and lithium imide significantly affects the hydrogen sorption properties of the materials. Order-disorder transitions were observed both during hydrogen desorption from ordered LiNH<sub>2</sub> and during deuterium adsorption on ordered Li<sub>2</sub>ND. Such transitions were not observed in disordered samples of the materials. The intrinsic disorder and the stoichiometry of Li - N - H(D) materials was shown to depend strongly on the techniques used during their synthesis. Studies regarding the synthesis, crystal chemistry and decomposition properties of the mixed Li / Na amides are presented. Two distinct mixed Li / Na amides of formulae Li<sub>3</sub>Na(NH<sub>2</sub>)<sub>4</sub> and LiNa<sub>2</sub>(NH<sub>2</sub>)<sub>3</sub> were observed in the LiNH<sub>2</sub> / NaNH<sub>2</sub> phase space. Na was also seen to be soluble in LiNH<sub>2</sub>, forming sodium-doped LiNH<sub>2</sub> . Li<sub>3</sub>Na(NH<sub>2</sub>)<sub>4</sub> and Na-doped LiNH<sub>2</sub> were found to exhibit significant cation non-stoichiometry, whereas LiNa<sub>2</sub>(NH<sub>2</sub>)<sub>4</sub> was shown to exist as a line phase material. Thermogravimetric and calorimetric studies of the mixed Li / Na amides suggested that these materials decompose primarily with loss of H<sub>2</sub>.
22

Nylon-6/Agricultural Filler Composites

Amintowlieh, Yasaman January 2010 (has links)
Preparation of thermoplastics composites using engineering thermoplastics and plant fibers or fillers is a technical challenge because the processing temperature of the thermoplastics is generally above the temperature of degradation of plant fibers of fillers. There have been numerous attempts for processing high melting point engineering thermoplastics like Nylon-6 with plant natural fibers and fillers. Low temperature processing methods, fiber modification or addition of additives which drops polymer melting point are some of proposed solutions for this problem. The objective of this thesis was to develop a formulation using wheat straw (WS) as a reinforcing fiber for Nylon-6. The concentration of WS was 15 wt-%. The thermoplastic composites were prepared by mixing grinded wheat straw and Nylon-6 using a laboratory scale twin-screw extruder; follow by preparation of samples using injection moulding. The strategy investigated in this thesis was utilization of additives to lower the melting point or to decrease the viscosity of Nylon-6. Lithium chloride salt (LiCl) and N-Butyl benzene Sulfon amide plasticizer (N-BBSA) were used as process additives to decrease melting point and to reduce the processing temperature and time. The addition of the wheat straw (15 wt-%) to the Nylon-6 increased modulus by 26.9 % but decreased the strength by 9.9 %. Effect of different level of these two additives on mechanical, thermal, physical properties and processability of the composite runs were studied. Addition of 4 wt-% LiCl was found to decrease the melting point from 222 °C to 191 °C, to increase modulus by 14 % in comparison to Nylon-6/wheat straw (15 wt-%). However, it decreased the processability and strength by 12.7 %. Plasticizer was investigated to easing processability and decreasing the degradation by reducing the residence time in the extruder, it does not affect the melting point of Nylon-6. The addition of 4 wt-% of plasticizer (N-BBSA) increased modulus and strength only by 2.6 % and 3 %, respectively, in comparison to Nylon-6/wheat straw (15 wt-%) composites. The results of mechanical properties were used as a benchmark for comparisons among samples with different formulations (levels of additives) to find out levels of LiCl and N-BBSA for the best mechanical properties. It was found that samples with 2 wt-% LiCl and 2 wt-% of N-BBSA had 29.3 % higher tensile modulus than neat Nylon-6, while its strength was almost same as neat Nylon-6 and 6.3 % higher than Nylon-6/WS (15 wt-%). These results were used to correlate the mechanical properties as a function of percentage of salt and plasticizer in the formulation. Differential scanning calorimetry (DSC) was used to evaluate the percentage of crystallinity and the melting point of the thermoplastic phase and thermal gravimetric analysis (TGA) was used to measure the thermal stability of different formulation. The kinetics of crystallization and degradation were evaluated using results from DSC and TGA, respectively. The activation energy for thermal degradation and the percentage of crystallinity of the thermoplastic composites were correlated to mechanical properties using linear regression. It was found that fiber degradation had a significant effect on strength but the effects of percentage of crystallinity on composites strength were insignificant. On the other hand, the percentage of crystallinity affects stiffness and impact strength. The ductility was a function of both crystallinity and thermal stability.
23

Polymerization And Characterization Of Allyl Methacrylate

Vardareli, Tugba 01 September 2006 (has links) (PDF)
Allyl methacrylate, AMA was polymerized by chemical initiator and by &amp / #947 / -radiation under different conditions. The polymer obtained is mostly gel type with some soluble fractions at lower conversions. Arrhenius activation energy is 82.3 kJ/mol for chemical initiated polymerization. The polymer was characterized by FT-IR, NMR, DSC, TGA, XPS, XRD, DLS, and MS methods. It was found that about 98-99% of allyl side groups retained as pendant even after completion of the polymerization, while 1-2% may give crosslinking and/or cyclization that yields lactones and anhydrides. The spectroscopic and thermal results of the work showed that the reaction is not cyclopolymerization, but may have end group cyclization. Molecular weight of 1.1x106 was measured by DLS. Therefore, insolubility is due to the high molecular weight of polymer, even in the early stage of polymerization rather than crosslinking. The Tg of PAMA was observed as 94&ordm / C before curing, upon curing at 150-200&ordm / C, Tg increased to 211&ordm / C as measured by DSC. The thermal treatment of polymer at about 350&ordm / C gave anhydride by linkage type degradation, following side group cyclization. The XPS analysis showed the presence of radical fragments of AIBN and CCl4 associated with oligomers. The MS and TGA thermograms showed two or three stage degradations depending on solubility. The first stage was mostly linkage type degradation for the fragmentation of pendant allyl groups at 225-350&ordm / C. In the second stage, at 395-515&ordm / C, the degradation is random scission and depolymerization.
24

Nylon-6/Agricultural Filler Composites

Amintowlieh, Yasaman January 2010 (has links)
Preparation of thermoplastics composites using engineering thermoplastics and plant fibers or fillers is a technical challenge because the processing temperature of the thermoplastics is generally above the temperature of degradation of plant fibers of fillers. There have been numerous attempts for processing high melting point engineering thermoplastics like Nylon-6 with plant natural fibers and fillers. Low temperature processing methods, fiber modification or addition of additives which drops polymer melting point are some of proposed solutions for this problem. The objective of this thesis was to develop a formulation using wheat straw (WS) as a reinforcing fiber for Nylon-6. The concentration of WS was 15 wt-%. The thermoplastic composites were prepared by mixing grinded wheat straw and Nylon-6 using a laboratory scale twin-screw extruder; follow by preparation of samples using injection moulding. The strategy investigated in this thesis was utilization of additives to lower the melting point or to decrease the viscosity of Nylon-6. Lithium chloride salt (LiCl) and N-Butyl benzene Sulfon amide plasticizer (N-BBSA) were used as process additives to decrease melting point and to reduce the processing temperature and time. The addition of the wheat straw (15 wt-%) to the Nylon-6 increased modulus by 26.9 % but decreased the strength by 9.9 %. Effect of different level of these two additives on mechanical, thermal, physical properties and processability of the composite runs were studied. Addition of 4 wt-% LiCl was found to decrease the melting point from 222 °C to 191 °C, to increase modulus by 14 % in comparison to Nylon-6/wheat straw (15 wt-%). However, it decreased the processability and strength by 12.7 %. Plasticizer was investigated to easing processability and decreasing the degradation by reducing the residence time in the extruder, it does not affect the melting point of Nylon-6. The addition of 4 wt-% of plasticizer (N-BBSA) increased modulus and strength only by 2.6 % and 3 %, respectively, in comparison to Nylon-6/wheat straw (15 wt-%) composites. The results of mechanical properties were used as a benchmark for comparisons among samples with different formulations (levels of additives) to find out levels of LiCl and N-BBSA for the best mechanical properties. It was found that samples with 2 wt-% LiCl and 2 wt-% of N-BBSA had 29.3 % higher tensile modulus than neat Nylon-6, while its strength was almost same as neat Nylon-6 and 6.3 % higher than Nylon-6/WS (15 wt-%). These results were used to correlate the mechanical properties as a function of percentage of salt and plasticizer in the formulation. Differential scanning calorimetry (DSC) was used to evaluate the percentage of crystallinity and the melting point of the thermoplastic phase and thermal gravimetric analysis (TGA) was used to measure the thermal stability of different formulation. The kinetics of crystallization and degradation were evaluated using results from DSC and TGA, respectively. The activation energy for thermal degradation and the percentage of crystallinity of the thermoplastic composites were correlated to mechanical properties using linear regression. It was found that fiber degradation had a significant effect on strength but the effects of percentage of crystallinity on composites strength were insignificant. On the other hand, the percentage of crystallinity affects stiffness and impact strength. The ductility was a function of both crystallinity and thermal stability.
25

Estudo dos efeitos da radiação ionizante em cartilagem costal humana por meio de termogravimetria e tomografia por coerência óptica / Study of ionizing radiation effects in human costal cartilage by thermogravimetry and optical coherence tomography

MARTINHO JUNIOR, ANTONIO C. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:35:02Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:00:03Z (GMT). No. of bitstreams: 0 / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
26

Estudo das propriedades mecânicas, reológicas e térmicas de nanocompósito de HMSPP (Polipropileno com alta resistência do fundido)com uma betonita brasileira / Study of mechanical, rheological and thermal properties of nanocomposite HMSPP (High melt strength polypropylene) with a brazilian bentonite

FERMINO, DANILO M. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:33:59Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:00:53Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
27

Análise térmica e diagramas de fase dos sistemas LiF-BiFsub(3) e NaF-BiFsub(3) / Thermal analysis and phase diagrams of the LiF-BiFsub(3) e NaF-BiFsub(3), systems

NAKAMURA, GERSON H. de G. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:41:22Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:06:16Z (GMT). No. of bitstreams: 0 / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
28

Estudo do comportamento de sulfetacao de ligas Fe20Cr

PILLIS, MARINA F. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:45:38Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:07:05Z (GMT). No. of bitstreams: 1 07307.pdf: 7122491 bytes, checksum: c6f55b3c5e36e13004a54501231c20a4 (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
29

Investigação de tratamentos alternativos de fosfatização para eliminação do níquel e cromo hexavalente / Investigation of alternative phosphating treatments for nickel and hexavalent chromium elimination

JAZBINSEK, LUIZ A.R. 20 February 2015 (has links)
Submitted by Maria Eneide de Souza Araujo (mearaujo@ipen.br) on 2015-02-20T18:11:07Z No. of bitstreams: 0 / Made available in DSpace on 2015-02-20T18:11:07Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado em Tecnologia Nuclear) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
30

Estudo e desenvolvimento de nanocompósitos PBT/argila bentonita tratados por radiação ionizante - preparação e caracterização / Study and development of nanocomposites PBT/bentonite clay treated by ionizing radiation - preparation and characterization

SARTORI, MARIANA do N. 09 June 2015 (has links)
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2015-06-09T18:33:58Z No. of bitstreams: 0 / Made available in DSpace on 2015-06-09T18:33:58Z (GMT). No. of bitstreams: 0 / Dissertação (Mestrado em Tecnologia Nuclear) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP

Page generated in 0.1387 seconds