• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 22
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 58
  • 58
  • 22
  • 21
  • 18
  • 14
  • 11
  • 11
  • 10
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Envolvimento dos sítios de ligação benzodiazepínicos localizados na substância cinzenta periaquedutal dorsal de ratos nos efeitos ansiolítico e panicolítico causado pelo alprazolam / Involvement of the benzodiazepine binding sites in the dorsal periaqueductal gray matter of rats in the anxiolytic- and panicolytic-like effects promoted by alprazolam

Frias, Alana Tercino 06 February 2018 (has links)
O transtorno do pânico (TP) é um transtorno de ansiedade caracterizado por ataques de pânico recorrentes e inesperados, com um prognóstico crônico. Entre as drogas utilizadas no tratamento do TP, os benzodiazepínicos (BZs) de alta potência, como o alprazolam e o clonazepam, apresentam a vantagem de serem eficazes logo no início do tratamento. Assim como outras drogas BZs, tais como o diazepam e o flurazepam, estes compostos também são empregados como ansiolíticos no tratamento de pacientes com transtorno de ansiedade generalizada. O mecanismo da ação primária dessas drogas ocorre pela interação com os sítios de ligação BZs presentes nos receptores do ácido gama-aminobutírico do tipo A (GABAA), facilitando a neutotransmissão GABAérgica. Entretanto, ainda permanecem desconhecidos os substratos neurais envolvidos no efeito panicolítico causado pelos BZs. Dentre os substratos em potencial, a substância cinzenta periaquedutal dorsal (SCPD), uma estrutura mesencefálica criticamente relacionada à fisiopatogênica do TP, apresenta alta densidade de receptores GABAA e de sítios de ligação BZs. Neste trabalho avaliamos o envolvimento do complexo receptor GABAA/BZ presente na SCPD no efeito panicolítico promovido pela administração sistêmica de alprazolam em ratos Wistar. Para isso, empregamos o labirinto em T elevado (LTE), que além da resposta de fuga, que é associada ao pânico, também permite avaliar a resposta de esquiva inibitória, associada à ansiedade. Neste modelo, o alprazolam inibe a expressão da resposta de fuga, indicando efeito panicolítico e inibe a aquisição da esquiva inibitória, sugestivo de efeito ansiolítico. Além do LTE, também empregamos os modelos experimentais da hipóxia e o de Vogel, associados ao pânico e a ansiedade, respectivamente. Os resultados obtidos mostraram que o efeito panicolítico promovido pela administração sistêmica de alprazolam, observado na resposta de fuga do LTE, foi bloqueado pela administração intra-SCPD de flumazenil, antagonista dos sítios de ligação BZs, ou de bicuculina, antagonista dos receptores 10 GABAA. No teste da hipóxia, o efeito panicolítico causado pela administração sistêmica de alprazolam foi inibido, porém não significativamente bloqueado, pela administração intra-SCPD de bicuculina. Já o efeito ansiolítico, observado na resposta de esquiva do LTE e no teste do beber punido de Vogel, não foi bloqueado pela administração intra-SCPD de flumazenil ou de bicuculina. No conjunto, nossos resultados sugerem que o complexo receptor GABAA/BZ da SCPD está envolvido no efeito panicolítico, mas não ansiolítico, promovido pela administração sistêmica de alprazolam. / Panic Disorder (PD) is an anxiety disorder characterized by recurrent and unexpected panic attacks with a chronic prognosis. Among the drugs used to treat PD, highpotency benzodiazepines (BZs), such as alprazolam and clonazepam, have the advantage of causing significant effects early in the treatment. Like others BZs, such as diazepam and flurazepam, these compounds are also used as anxiolytics in the treatment of patients with generalized anxiety disorder. The primary mechanism of action of these drugs is the interaction with BZs binding sites present at gammaaminobutyric acid type A receptors (GABAA), facilitating GABAergic neurotransmission. However, it remains yet unknown the neural substrates involved in the panicolytic-like action caused by BZs. Among the potential substrates, the dorsal periaqueductal gray matter (DPAG), a mesencephalic structure critically associated with the physiopathology of PD, presents a high density of GABAA receptors and of BZs binding sites. In this work, we evaluated the participation of the GABAA/BZ receptor complex present in the DPAG in the panicolytic-like effect caused by systemic administration of alprazolam in Wistar rats. For this, we use the elevated T-maze (ETM), that besides the escape response which is associated with panic, also allows the measurement of inhibitory avoidance acquisition, which has been related to anxiety. In this model, alprazolam inhibits the expression of escape, indicating a panicolytic-like effect and inhibits the acquisition of inhibitory avoidance, suggestive of an anxiolytic effect. In addition to the ETM, animals were also tested in the hypoxia and Vogel\'s conflict tests, which have been associated with panic and anxiety, respectively. The results showed that the panicolytic-like effect caused by alprazolam in ETM\'s escape response was blocked by intra-DPAG injection of flumazenil, a BZs binding site antagonist, or bicuculline, a GABAA receptor antagonist. In the hypoxia test, the panicolytic-like effect caused by alprazolam was inhibited, but not significantly blocked, by intra-DPAG injection of bicuculline. The anxiolytic effect observed in the 12 ETM\'s avoidance task or in the Vogel\'s conflict test was not blocked by intra-DPAG injection of flumazenil or bicuculline. Taken together, our results suggest that the GABAA/BZ receptor complex located in the DPAG is involved in the panicolytic, but not anxiolytic, effect caused by systemic administration of alprazolam.
22

Patterns of Regional Cerebral Blood Flow in Patients with Occlusive or Stenotic Lesions of Both the Internal Carotid and Vertebrobasilar Arteries

ITOH, JUNKI, TAKADA, SOHSHUN, ISHIGURI, HITOSHI, KUCHIWAKI, HIROJI 03 1900 (has links)
No description available.
23

Study of the neuronal projection from the ventral tegmental area and substantia nigra to the periaqueductal gray region /

Li, Sa, January 2003 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 2003. / Restricted until October 2004. Bibliography: leaves 90-116.
24

Envolvimento dos sítios de ligação benzodiazepínicos localizados na substância cinzenta periaquedutal dorsal de ratos nos efeitos ansiolítico e panicolítico causado pelo alprazolam / Involvement of the benzodiazepine binding sites in the dorsal periaqueductal gray matter of rats in the anxiolytic- and panicolytic-like effects promoted by alprazolam

Alana Tercino Frias 06 February 2018 (has links)
O transtorno do pânico (TP) é um transtorno de ansiedade caracterizado por ataques de pânico recorrentes e inesperados, com um prognóstico crônico. Entre as drogas utilizadas no tratamento do TP, os benzodiazepínicos (BZs) de alta potência, como o alprazolam e o clonazepam, apresentam a vantagem de serem eficazes logo no início do tratamento. Assim como outras drogas BZs, tais como o diazepam e o flurazepam, estes compostos também são empregados como ansiolíticos no tratamento de pacientes com transtorno de ansiedade generalizada. O mecanismo da ação primária dessas drogas ocorre pela interação com os sítios de ligação BZs presentes nos receptores do ácido gama-aminobutírico do tipo A (GABAA), facilitando a neutotransmissão GABAérgica. Entretanto, ainda permanecem desconhecidos os substratos neurais envolvidos no efeito panicolítico causado pelos BZs. Dentre os substratos em potencial, a substância cinzenta periaquedutal dorsal (SCPD), uma estrutura mesencefálica criticamente relacionada à fisiopatogênica do TP, apresenta alta densidade de receptores GABAA e de sítios de ligação BZs. Neste trabalho avaliamos o envolvimento do complexo receptor GABAA/BZ presente na SCPD no efeito panicolítico promovido pela administração sistêmica de alprazolam em ratos Wistar. Para isso, empregamos o labirinto em T elevado (LTE), que além da resposta de fuga, que é associada ao pânico, também permite avaliar a resposta de esquiva inibitória, associada à ansiedade. Neste modelo, o alprazolam inibe a expressão da resposta de fuga, indicando efeito panicolítico e inibe a aquisição da esquiva inibitória, sugestivo de efeito ansiolítico. Além do LTE, também empregamos os modelos experimentais da hipóxia e o de Vogel, associados ao pânico e a ansiedade, respectivamente. Os resultados obtidos mostraram que o efeito panicolítico promovido pela administração sistêmica de alprazolam, observado na resposta de fuga do LTE, foi bloqueado pela administração intra-SCPD de flumazenil, antagonista dos sítios de ligação BZs, ou de bicuculina, antagonista dos receptores 10 GABAA. No teste da hipóxia, o efeito panicolítico causado pela administração sistêmica de alprazolam foi inibido, porém não significativamente bloqueado, pela administração intra-SCPD de bicuculina. Já o efeito ansiolítico, observado na resposta de esquiva do LTE e no teste do beber punido de Vogel, não foi bloqueado pela administração intra-SCPD de flumazenil ou de bicuculina. No conjunto, nossos resultados sugerem que o complexo receptor GABAA/BZ da SCPD está envolvido no efeito panicolítico, mas não ansiolítico, promovido pela administração sistêmica de alprazolam. / Panic Disorder (PD) is an anxiety disorder characterized by recurrent and unexpected panic attacks with a chronic prognosis. Among the drugs used to treat PD, highpotency benzodiazepines (BZs), such as alprazolam and clonazepam, have the advantage of causing significant effects early in the treatment. Like others BZs, such as diazepam and flurazepam, these compounds are also used as anxiolytics in the treatment of patients with generalized anxiety disorder. The primary mechanism of action of these drugs is the interaction with BZs binding sites present at gammaaminobutyric acid type A receptors (GABAA), facilitating GABAergic neurotransmission. However, it remains yet unknown the neural substrates involved in the panicolytic-like action caused by BZs. Among the potential substrates, the dorsal periaqueductal gray matter (DPAG), a mesencephalic structure critically associated with the physiopathology of PD, presents a high density of GABAA receptors and of BZs binding sites. In this work, we evaluated the participation of the GABAA/BZ receptor complex present in the DPAG in the panicolytic-like effect caused by systemic administration of alprazolam in Wistar rats. For this, we use the elevated T-maze (ETM), that besides the escape response which is associated with panic, also allows the measurement of inhibitory avoidance acquisition, which has been related to anxiety. In this model, alprazolam inhibits the expression of escape, indicating a panicolytic-like effect and inhibits the acquisition of inhibitory avoidance, suggestive of an anxiolytic effect. In addition to the ETM, animals were also tested in the hypoxia and Vogel\'s conflict tests, which have been associated with panic and anxiety, respectively. The results showed that the panicolytic-like effect caused by alprazolam in ETM\'s escape response was blocked by intra-DPAG injection of flumazenil, a BZs binding site antagonist, or bicuculline, a GABAA receptor antagonist. In the hypoxia test, the panicolytic-like effect caused by alprazolam was inhibited, but not significantly blocked, by intra-DPAG injection of bicuculline. The anxiolytic effect observed in the 12 ETM\'s avoidance task or in the Vogel\'s conflict test was not blocked by intra-DPAG injection of flumazenil or bicuculline. Taken together, our results suggest that the GABAA/BZ receptor complex located in the DPAG is involved in the panicolytic, but not anxiolytic, effect caused by systemic administration of alprazolam.
25

The brain structure during language development: neural correlates of sentence comprehension in preschool children

Qi, Ting 10 July 2020 (has links)
Language skills increase as the brain matures and language specialization is linked to the left hemisphere. Among distinct language domains, sentence comprehension is particularly vital in language acquisition and, by comparison, requires a much longer time-span before full mastery in children. Although accumulating studies have revealed the neural mechanism underlying sentence comprehension acquisition, the development of the brain’s gray matter and its relation to sentence comprehension had not been fully understood. This thesis employs structural magnetic resonance imaging and diffusion-weighted imaging data to investigate the neural correlates of sentence comprehension in preschoolers both cross-sectionally and longitudinally. The first study examines how cortical thick- ness covariance is relevant for syntax in preschoolers and changes across development. Results suggest that the cortical thickness covariance of brain regions relevant for syntax increases from preschoolers to adults, whilst preschoolers with superior language abilities show a more adult-like covariance pattern. Reconstructing the white matter fiber tract connecting the left inferior frontal and superior temporal cortices using diffusion-weighted imaging data, the second study suggests that the reduced cortical thickness covariance in the left frontotemporal regions is likely due to immature white matter connectivity during preschool. The third study then investigated the cortical thickness asymmetry and its relation to sentence comprehension abilities. Results show that longitudinal cortical thick- ness asymmetry in the inferior frontal cortex was associated with improvements in sentence comprehension, further suggesting the crucial role of the inferior frontal cortex for sentence comprehension acquisition. Taken together, evidence from gray and white matter data provides new insights into the neuroscientific model of language acquisition and the emergence of syntactic processing during language development.
26

Cardiovascular risk factors in ageing brains: Functional and structural correlates of modifiable risk factors of brain ageing and Alzheimer’s disease among older individuals

Kharabian Masouleh, Shahrzad 02 May 2019 (has links)
3. Summary Dissertation zur Erlangung des akademischen Grades Dr. rer. med. Cardiovascular risk factors in ageing brains: Functional and structural correlates of modifiable risk factors of brain ageing and Alzheimer’s disease among older individuals Eingereicht von: Shahrzad Kharabian Masouleh Angefertigt am: Max-Planck-Institut für Kognitions- und Neurowissenschaften, Abteilung für Neurologie, Leipzig Betreut von: Prof. Dr. med. Arno Villringer Dr. A. Veronica Witte March 2018 Due to a world-wide demographic change ageing-associated complications including cognitive impairments and neurodegenerative diseases such as dementia are becoming increasingly prevalent. In 2015, almost 47 million people worldwide were estimated to be affected by dementia, and the numbers are expected to reach 75 million by 2030, and 131 million by 2050, with the greatest increase expected in low-income and middle-income countries (Prince, M.; Wimo, A.; Guerchet, M.; Ali, G.; Wu, Y.; Prina, 2015). As no cure or substantial symptom-relieving treatment is yet available for these ever growing pathologic conditions, identifying modifiable factors that causally impact the risk of these diseases has become an important mission (Barnes and Yaffe, 2011). Although age is known to be the most important risk factor for these conditions, not all older individuals develop these pathologic states and pathologic neurodegenerative changes are not considered as part of a normal aging process. However, observations show that almost all aged brains show characteristic changes that are linked to neurodegeneration (Wyss-Coray, 2016). These observations raise the possibility that fundamental mechanisms of ageing may display early disease changes or contribute to the pathogenesis of neurodegenerative disorders (Bartzokis, 2011; Bishop et al., 2010; Raz, 2005). A better understanding of possible modulators of function and structure of brain in regions that are known to be vulnerable in aging would thus open a novel window towards targets for intervention of disease progression. Epidemiological studies have begun to identify many environmental and genetic risk factors that influence prevalence of neurodegenerative diseases in older ages. Importantly, with respect to Alzheimer’s disease (AD), conditions such as depression, obesity and hypertension, specifically in midlife and diabetes are shown to independently affect increased prevalence of AD worldwide. In 2010, fifteen thousand AD-cases world-wide were attributed to cigarette smoking and low physical or mental activity (Norton et al., 2014). Moreover, disadvantageous metabolic profiles such as higher blood glucose levels or lower high-density lipoprotein (HDL) levels have also been associated with worse cognition, brain alterations in AD-vulnerable regions and ultimately increased likelihood of developing AD in older ages (Crane et al., 2013; Villeneuve et al., 2014). In the first study of this thesis, we reviewed the epidemiological evidence regarding the impact of a “Mediterranean style diet” (MeDi) on brain health in aging (Huhn et al., 2015). MeDi, which is based on high consumption of fruits, vegetables, grains as well as sea-fish and low intake of sweets, convenient food, meat and dairy products, is shown to reduce cardio-vascular risk factors and benefit lipid and glucose metabolism while reducing risk of AD and cognitive dysfunction in aging. Despite extensive epidemiological evidence, little is known about neurobiological mechanisms, linking these life-style and health related factors to alterations in cognitive performance and incidence of AD. In the recent years whole brain magnetic resonance (MR) measurements have immensely increased our knowledge about the brain in health and disease. Novel MR protocols and analysis routines have been invented to assess different aspects of structure of the brain regions and their function within the living individuals. Studies in elderly AD patients have linked deposition of amyloid plaques, assessed using positron emission tomography (PET), in vulnerable structures such as frontal lobe, medial temporal structures and posterior cingulate area to atrophy and lower metabolic rate of glucose within these brain regions in association with accelerated cognitive decline (Buckner et al., 2005). Also, within healthy ageing population it has been shown that these AD-prone structures create a network, in which grey matter (GM) volume follow a different ageing trajectory compared to the rest of the brain, with a late development during adolescence and accelerated decline in older ages (Douaud et al., 2014; Fjell et al., 2014). Such coordinated change, specifically in older ages, might be a result of shared susceptibility of regions within this network to selective pathologies or a network-based spread of toxic agents (Zhou et al., 2012). Consequently, the above-mentioned AD-risk factors could through similar mechanisms impact brain structures within vulnerable regions, resulting in accelerated ageing, possibly reducing resilience of these regions towards AD-related pathology and thus increasing risk of developing AD in older ages. Based on this working hypothesis, in the rest of this doctoral research we investigate cerebral correlates of these risk factors and their impact on cognitive performance in healthy older adults. We initially focused on obesity as a major epidemic of the twentieth century, a major component of metabolic syndrome and an important AD-risk factor. Here we used conventional techniques to identify effects of Body-mass index (BMI) on regional GM volume (n = 617) as well as resting-state network connectivity (n = 712) and relations to cognitive performance in well-characterized samples of community-dwelled older adults (60-80 years) from Leipzig Research Centre for Civilization Diseases (LIFE) adult-study. The LIFE-Adult-Study is a population-based cohort study, which has already completed the baseline examination of 10,000 randomly selected participants from Leipzig, out of which ~2600 underwent a 3Tesla MRI brain scan, structured interviews, neuropsychological tests, and an extensive set of medical assessments (Loeffler et al., 2015). Our results showed that independent of age and a wide range of other confounding factors such as diabetes, hypertension, smoking status and APOE-genotype, there is a robust linear association between a higher BMI and lower GM volume in multiple brain regions, including (pre)frontal, temporal, insular and occipital cortex, thalamus, putamen, amygdala and cerebellum, which partially mediated negative effects of higher BMI on memory performance in our sample of older adults (Kharabian Masouleh et al., 2016). Furthermore, in the follow-up study, we found reproducible association between higher BMI and lower functional connectivity of the posterior cingulate cortex with other nodes of the default mode network (Beyer et al., 2017). This network that consists of AD-prone regions within frontal, temporal and parietal lobes, exhibits similar alterations in normal ageing and among patients with AD (Damoiseaux et al., 2012; Tomasi and Volkow, 2012). Inspired by our results on network-based functional connectivity alterations and in-line with the hypothesis of network-based spread of toxic agents in neurodegenerative diseases, in our third MRI-study, we extended the number of risk factors to cover major “modifiable” risk factors of AD and identified the potential impact of these factors on morphological properties of large-scale structural covariance networks (Kharabian Masouleh et al., 2017). We therefore systematically assessed independent effects of obesity, smoking, blood pressure, as well as markers of glucose and lipid metabolism and physical activity on major GM networks in the same cohort as our first MR study. Furthermore, we detailed our analysis by adding both BMI as well as waist-to-hip ratio as measures of obesity and identified the structural networks based on information on area, thickness and volume of cortical structures. The spatial extent and composition of the co-varying GM measures within the different networks indicated that smoking and, to a lesser degree, higher blood pressure affected GM throughout the brain, which might be attributed to direct and indirect damage of neuronal tissue. Higher glycosylated hemoglobin, as a long-term marker of glucose metabolism, was found to predominantly affect areas that are known to have high glucose metabolism and early A-beta deposition. In addition, we detected negative effects of visceral obesity on a structural network consisting of multimodal regions, covering areas rich in intracortical myelinated fibres. This network spatially recapitulated the pattern of brain atrophy observed in Alzheimer’s disease and has been previously shown to develop relatively slowly during adolescence but present “accelerated” age-related degeneration at an old age. Accordingly, our findings possibly point towards detrimental effects of visceral fat-induced low-grade inflammation on myelin. This is a hypothesis that we are going to test in our future studies in LIFE (by direct assessment of visceral fat (VAT) on abdominal MRI and inflammatory markers). Future longitudinal studies that incorporate more detailed microstructural assessments are now needed to prove our proposed neurobiological hypotheses on the underlying mechanisms of the observed effects and to test if improving cardiovascular risk, specifically visceral obesity, would help to maintain the integrity of GM networks throughout old age and reduce the risk of AD.:List of Abbreviations 3 List of Figures 4 List of Tables 5 1. Introduction: 6 1.1: “Normal” cognitive ageing: 9 1.1.1. Ageing-associated changes in brain structure and function: 9 1.2. Modifiers of brain ageing and AD: 11 1.3. Methods: 18 1.3.1. Imaging protocols: 18 1.3.2. Network Identification: 19 1.3.2.1. Resting-state fMRI network extraction 19 1.3.2.2. Grey matter structural network extraction 20 1.4. Rationale of the work: 23 2. Publications: 25 2.1. Publication1: Review: Huhn et al, 2015 25 2.2. Publication2: Original article: Kharabian et al, 2016 36 2.3. Publication3: Original article: Beyer et al, 2017 47 2.4. Publication4: Original article: Kharabian et al, 2017 62 3. Summary: 76 References: 83 A. Supplemental Materials 93 Publication2- Kharabian Masouleh et. al., 2016 93 Supplementary Tables for Publication2 97 Supplementary Figures for Publication 2 101 Supplementary Figures for Publication4 105 B. Declaration of Authenticity 106 C. Author contributions to the publications 107 D. Curriculum Vitae 114 E. List of Publications: 117 F. Acknowledgements 119
27

Searching for patomechanisms of late life minor depression

Polyakova, Maryna 21 May 2019 (has links)
The doctoral dissertation: Searching for pathomechanisms of late-life minor depression – a combined MRI, biomarker and meta-analytic study was one of the first studies investigating the underlying pathophysiology of minor depression. The dissertation comprises a systematic review of the prevalence rates of minor depression, two meta-analyses of peripheral BDNF changes in major depressive disorder, as well as two original studies investigating serum BDNF, S100B and NSE levels and gray matter changes in minor depression. The limitations of studies and proposed improvements to the study design are discussed extensively.:1. INTRODUCTION 1.1 Motivation 1.1.1 Minor depression in the spectrum of psychiatric disorders 1.1.2 Minor depression is prevalent but unrecognized. 1.2 Theoretical background 1.2.1 Overview of depression hypotheses 1.2.2 Neurotrophic hypothesis of depressive disorders 1.2.3 Glial hypothesis of depressive disorders 1.2.4 Structural neuroimaging changes in major depression 1.3. Rationale and hypotheses of the empirical studies 1.3.1 Research questions 1.3.2 Research hypotheses 2. EMPIRICAL STUDIES 2.1 The prevalence of minor depression in the late life 2.2 The meta-analysis of BDNF changes in mood disorders 2.3 The meta-analysis of BDNF changes following ECT in depression 2.4 Serum biomarkers in minor depression 2.5 Structural brain imaging in minor depression 3. GENERAL DISCUSSION 3.1 Summary of results 3.2 Implications for research 3.3 Implications for clinical studies SUMMARY REFERENCES APPENDIX A: DECLARATION OF CONTRIBUTION APPENDIX B: STATEMENT OF AUTHORSHIP APPENDIX C: CURRICULUM VITAEAPPENDIX D: ACADEMIC CONTRIBUTIONS APPENDIX E: ACKNOWLEDGMENT
28

A Multimodal Magnetic Resonance Study of the Effects of Childhood Lead Exposure on Adult Brain Structure

Brubaker, Christopher John 15 September 2009 (has links)
No description available.
29

Gray matter volume in medication-naïve individuals with ADHD : A systematic review of voxel-based morphometry MRI-studies

Baar, Linn January 2024 (has links)
Attention deficit hyperactivity disorder is one of the most common neurodevelopmental disorders, affecting around 7% of the worldwide population in their everyday life. It has been suggested that individuals with ADHD differ in gray matter volume from typically developing controls. However, findings on in which brain areas these differences are located, as well as how gray matter volume is affected by stimulant medication, remain inconclusive. Therefore, this systematic review aimed to investigate any potential differences in gray matter volume in medication-naïve individuals with ADHD compared to controls, focusing on studies using voxel-based morphometry applied to MRI-imaging data A keyword search in the databases Web of Science, Scopus and Medline EBSCO resulted in 349 studies, of which seven met the inclusion criteria and were included in the review. The results included a total of 169 participants diagnosed with ADHD and 148 typically developing controls. Findings suggested decreased cerebellar gray matter volume, potential gender-wise volume differences in the anterior cingulate cortex, and a decrease in caudate gray matter volume, specifically in adults with ADHD. Some limitations include small sample sizes, possible effects of age on gray matter volume, and the overall heterogeneous nature of the disorder. The present review agrees that individuals with ADHD exhibit differences in gray matter volume, but also highlights the importance of expanding research on medication-naïve subjects, to be able to draw more robust scientific conclusions about the neural correlates of ADHD in the future.
30

Structural Brain Abnormalities in Temporomandibular Disorders

Moayedi, Massieh 18 December 2012 (has links)
Temporomandibular disorders (TMD) are a family of prevalent chronic pain disorders affecting masticatory muscles and/or the temporomandibular joint. There is no unequivocally recognized peripheral aetiology for idiopathic TMD. The central nervous system (CNS) may initiate and/or maintain the pain in idiopathic TMD due to sustained or long-term nociceptive input that induces maladaptive brain plasticity, and/or to inherent personality-related factors that may reduce the brain's capacity to modulate nociceptive activity. The main aim of this thesis is to determine whether there are structural neural abnormalities in patients with TMD, and whether these abnormalities are related to TMD pain characteristics, or to neuroticism. The specific aims are to delineate in TMD: (1) gray matter (GM) brain abnormalities and the contribution of pain and neuroticism to abnormalities; (2) the contribution of abnormal brain GM aging in focal cortical regions associated with nociceptive processes; and (3) abnormalities in brain white matter and trigeminal nerve and the contribution of pain. In groups of 17 female patients with TMD and 17 age- and sex- matched controls, magnetic resonance imaging revealed that patients with TMD had: (1) thicker cortex in the somatosensory, ventrolateral prefrontal and frontal polar cortices than controls, (2) cortical thickness in motor and cognitive areas that was negatively related to pain intensity, orbitofrontal cortical thickness that was negatively correlated to pain unpleasantness, and thalamic GM volume correlated to TMD duration, (3) an abnormal relationship between neuroticism and orbitofrontal cortical thickness, (4) abnormal GM aging in nociceptive, modulatory and motor areas, (5) widespread abnormalities in white matter tracts in the brain related to sensory, motor and cognitive functions, (6) reduced trigeminal nerve integrity related to pain duration, and (7) abnormal connectivity in cognitive and modulatory brain regions. In sum, this thesis demonstrates for the first time abnormalities in both peripheral nerve and CNS in patients with TMD.

Page generated in 0.0288 seconds