• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 6
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Health risk of growing and consuming vegetables using greywater for irrigation.

Jackson, Siobhan Ann Forbes. January 2010 (has links)
Two of the challenges facing Africa in the 21st Century are effective use of restricted water resources and ensuring food security especially for poor communities. In line with these aims, the eThekwini municipality has introduced a multi-tier system of water supply ranging from full pressure reticulated systems along with flush toilets to standpipes and dry toilet systems. In the latter case, it was soon recognized that the disposal of greywater presented a problem. Bearing in mind that South Africa is already a water scarce region, research was initiated into finding means of using this water as a resource rather than as a waste. Initial on-site trials using the greywater to irrigate crops proved popular and it was then regarded as necessary to test the possible health effects on the communities of such a system. A controlled field trial using pot plantings of a selected range of edible vegetables was initiated at the University of KwaZulu-Natal. Crops were tested both internally and externally for a range of indicator and potentially pathogenic organisms. Quantitative Microbial Risk Assessment (QMRA) techniques were used to assess the health risk to communities from growing and eating the greywater- irrigated vegetables. Although there was a health risk related to most of the activities, especially the handling of the greywater itself, the risks could be brought within the World Health Organisation guidelines of less than one case of disease per 10 000 people per year by the implementation of simple barrier interventions. The greywater irrigated crops themselves, did not present a statistically higher risk of infection than the crops irrigated with either hydroponic solution or tap water. These findings show the importance of applying QMRA to each case to determine health risk. This would allow the productive use of greywater and other water sources in the correct circumstances, thus providing food sustainability for people who currently do not have access to the levels of high purity water currently recommended for agriculture. / Thesis (M.Sc.)-University of KwaZulu-Natal, Westville, 2010.
2

Advancing Membrane Technologies for Recovery of Phosphorus and Nitrogen from Human Urine

McCartney, Stephanie Nicole January 2022 (has links)
The existing linear economy approach to nutrient management has clear shortcomings including high expenditures for nutrient extraction and production of fertilizer as well as additional costs for nutrient removal at downstream waste water treatment plants (WWTPs) to prevent the pollution of aquatic environments. In a circular nutrient economy, phosphorus (P) and nitrogen (N) are removed from waste streams and captured as valuable fertilizer products in order to more sustainably reuse the resources in closed-loops and simultaneously protect receiving aquatic environments from harmful P and N emissions. The overarching aim of this thesis is to understand strategic approaches for nutrient recovery from wastewater and advance membrane technologies for P and N reclamation. The studies i.) approach nutrient recovery on a system-level to recognize optimal waste streams to target for P and N separation, ii.) advance membrane-based processes for nutrient recovery, and iii.) examine the economic viability of the nutrient recovery techniques.The thesis presents a thermodynamic and energy analysis of nutrient recovery from various waste streams of fresh and hydrolyzed urine, greywater, domestic wastewater, and secondary treated wastewater effluent. The analysis revealed comparative advantages in theoretical energy intensities for P and N recovery from nutrient-dense waste streams, such as fresh and hydrolyzed urine, compared to other more dilute sources. The thesis quantifies efficiencies required by separation techniques for nutrient reclamation to be competitive with the energy requirements of the prevailing industrial fertilizer production methods, i.e., phosphate mining and nitrogen fixation by the Haber-Bosch process. The dissertation examines and advances the performance of membrane-based processes for separation and recovery of P and N from diverted human urine. Donnan dialysis (DD), an ion-exchange membrane-based process, can capture and enrich orthophosphate, HxPO4(3−x)−, from source-separated urine. This work demonstrates the transport of Cl− driver ions down a concentration gradient, across an ion-exchange membrane to set up an electrochemical potential gradient that drives the transport of target HxPO4(3−x)− in the opposite direction, enabling P capture. Importantly, H2PO4− is transported against an orthophosphate concentration gradient, which achieves uphill transport of P. The thesis also provides a framework to better understand the impact of different ions in the water matrix on P recovery potential and kinetics. The thesis presents a novel operation of membrane distillation (MD) — isothermal membrane distillation with acidic collector (IMD-AC) — to selectively recover volatile ammonia, NH3, from hydrolyzed urine. The innovative isothermal and acidic collector features, respectively, suppressed undesired water permeation and enhanced ammonia vapor flux relative to conventional membrane distillation (CMD). The elimination of water flux in IMD-AC resulted in ≈95% savings in vaporization energy consumption relative to CMD. Critically, IMD-AC achieved uphill transport of ammoniacal nitrogen, i.e., transport against a concentration gradient, demonstrating the promising potential of the technique for N recovery. The dissertation proposes an integrated bipolar membrane electrodialysis (BPM-ED), DD, and IMD-AC system to drive the separation and recovery of orthophosphate and ammoniacal nitrogen from human urine. This work elucidates the role of pH and nutrient speciation (i.e., H2PO4− versus HPO42− and NH4+ versus NH3) on the performance of DD and IMD-AC. In the proposed configuration, BPM-ED generates acids and bases in situ to strategically control the pH of urine streams to benefit DD and IMD-AC performances. Strategic pH modification can enhance orthophosphate transport and selectivity in DD as well as ammonia transport and recovery potential in IMD-AC. Importantly, the analysis quantifies comparable specific energy consumptions of the proposed integrated membrane-based process to the existing approaches to P and N management. This thesis presents a preliminary economic assessment of onsite nutrient recovery employing DD and IMD-AC for respective P and N recovery from diverted urine. The analysis reveals opportunities to utilize widely-available waste chemical streams and recovered thermal energy to improve the economic viability of nutrient recovery. The largest capital expenditures are urine diversion toilets and additional piping for source-separation. Preliminary analysis demonstrates that employing urine diversion in public sanitation rooms, as opposed to private bathrooms, can reduce these capital expenditures. Furthermore, realizing savings from avoided costs for downstream nutrient removal at centralized wastewater treatment plants in addition to fertilizer revenue can enhance the economic viability of the approach. Overall, this dissertation critically informs nutrient recovery approaches and advances membrane-based processes for P and N reclamation to facilitate a paradigm shift from an inefficient linear nutrient economy to a sustainable circular nutrient economy. The work reveals opportunities to minimize energy intensity for nutrient separation, advance the performance of membrane-based techniques for selective and energy-efficient nutrient recovery from urine, and enhance the cost-competitiveness of nutrient reclamation. The findings of this work support nutrient recovery efforts and provide important insights that can be applied to other separation and resource recovery endeavors.
3

Hydroponics system for wastewater treatment and reuse in horticulture /

Oyama, Noraisha. January 2008 (has links)
Thesis (Ph.D.)--Murdoch University, 2008. / Thesis submitted to the Faculty of Sustainability, Environmental and Life Sciences. Includes bibliographical references (leaves 118-134)
4

Avaliação quantitativa de riscos microbiológicos (AQRM) associados à E. coli em águas cinza /

Pasin, Débora Brunheroto. January 2013 (has links)
Orientador: Rodrigo Braga Moruzzi / Banca: Marcelo de Julio / Banca: Gustavo Henrique Ribeiro da Silva / Resumo: O reúso de águas cinza apresenta-se como uma alternativa de ampliação da oferta de água que pode contribuir para a conservação dos recursos híbridos, perante a escassez da água, não apenas pela qualidade, mas também pela quantidade. Os riscos associados à exposição rotineira ou acidental dessa fonte de alternativa devem, entretanto, ser considerados, para que se possam estabelecer práticas seguras de reúso, uma vez que as águas de reúso podem apresentar patógenos, tais como: vírus, bactérias, protozoários e helmintos. O presente trabalho teve como objetivo avaliar quantitativamente os riscos microbiológicos das diversas fontes de exposições dos usuários a E. coli na água cinza sem tratamento, a fim de definir uma faixa de Valores Máximos Permitidos (VMP) por meio de conceito de riscos aceitáveis 10-3 e 10-6 pppa (por pessoa por ano), para as diversas finalidades de reúso. Para tal, foram avaliadas a exposição, a dose-resposta e a probabilidade de infecção para diferentes finalidades de reúso. O modelo de beta-Poisson foi empregado para avaliação da probabilidade de infecção. A dose infectante (N50), a concentração de microorganismos, a rota de exposição, os volumes ingeridos (acidentalmente e rotineiramente), os parâmetros de interação agente-hospedeiro (α e β), bem como a frequencia de exposição foram avaliados a partir de uma compilação sistemática de dados da literatura. E, por meio da Avaliação Quantitativa de Riscos Microbiológicos (AQRM), o maior risco de infecção identificado decorreu do reúso de águas cinza misturadas para a finalidade de balnearidade e irrigação de culturas alimentares por meio de ingestão de alimentos, incorrendo em risco de aproximadamente 9,9 pessoas de cada dez indivíduos expostos, sem considerar os efeitos de diluição da água. Esse cenário, resultou... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The reuse of greywater is presented as an alternative to increasing the supply of water that can contribute to the conservation of water resources against water scarcity, not only the quality but also the quantity. The risks associated with exposure routine or accidental this alternative source should, however, be considered, so that they establish safe practices of reuse, since reusing water may have pathogens, such as viruses, bacteria, protozoa and helminths. The present study aimed to quantitatively evaluate the microbiological risks of different sources of exposure of users to E. coli in untreated gray water, in order to define a range of Maximum Values Allowed (MVA) through the concept of acceptable risk 10-3 and 10-6 pppy (per person per year), for the various purposes of reuse. To this end, we evaluated the exposure, the dose -response and the probability of infection for different purpose reuse. The beta-Poisson model was used to assess the likehood of infection. The infective dose (N50), the concentration of microorganisms, the route of exposure, the volumes ingested (accidentally and roubinely), the parameters of agent-host interaction (α and β), and the frequency of exposure were evaluated from one systematic compilation of literature. And, through Quantitative Microbiological Risk Assessment (QMRA), the greatest risk of infection identified resulted from the reuse of greywater mixed for the purpose of bathing and irrigation of food crops through food intake, resulting in risk of approximately 9,9 out of ten people exposed individuals, without considering the effects dilution water. This situation has resulted in MVA 5.25 to 105 MPN/100 mL and 3.95 to 39.5 MPN/100 mL, respectively, to an acceptable risk of 10-3 ppy and 0.00 to 0.10 MPN/100 mL and 0.00 to 0.04 MPN/100mL simultaneously to risk of 10-6 pppy. The lowest risk of infection was due... (Complete abstract click electronic access below) / Mestre
5

Avaliação quantitativa de riscos microbiológicos (AQRM) associados à E. coli em águas cinza

Pasin, Débora Brunheroto [UNESP] 01 August 2013 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:29:31Z (GMT). No. of bitstreams: 0 Previous issue date: 2013-08-01Bitstream added on 2014-06-13T19:59:10Z : No. of bitstreams: 1 pasin_db_me_bauru.pdf: 597021 bytes, checksum: 186b1dd9901aafb4d694462951b7f7c7 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O reúso de águas cinza apresenta-se como uma alternativa de ampliação da oferta de água que pode contribuir para a conservação dos recursos híbridos, perante a escassez da água, não apenas pela qualidade, mas também pela quantidade. Os riscos associados à exposição rotineira ou acidental dessa fonte de alternativa devem, entretanto, ser considerados, para que se possam estabelecer práticas seguras de reúso, uma vez que as águas de reúso podem apresentar patógenos, tais como: vírus, bactérias, protozoários e helmintos. O presente trabalho teve como objetivo avaliar quantitativamente os riscos microbiológicos das diversas fontes de exposições dos usuários a E. coli na água cinza sem tratamento, a fim de definir uma faixa de Valores Máximos Permitidos (VMP) por meio de conceito de riscos aceitáveis 10-3 e 10-6 pppa (por pessoa por ano), para as diversas finalidades de reúso. Para tal, foram avaliadas a exposição, a dose-resposta e a probabilidade de infecção para diferentes finalidades de reúso. O modelo de beta-Poisson foi empregado para avaliação da probabilidade de infecção. A dose infectante (N50), a concentração de microorganismos, a rota de exposição, os volumes ingeridos (acidentalmente e rotineiramente), os parâmetros de interação agente-hospedeiro (α e β), bem como a frequencia de exposição foram avaliados a partir de uma compilação sistemática de dados da literatura. E, por meio da Avaliação Quantitativa de Riscos Microbiológicos (AQRM), o maior risco de infecção identificado decorreu do reúso de águas cinza misturadas para a finalidade de balnearidade e irrigação de culturas alimentares por meio de ingestão de alimentos, incorrendo em risco de aproximadamente 9,9 pessoas de cada dez indivíduos expostos, sem considerar os efeitos de diluição da água. Esse cenário, resultou... / The reuse of greywater is presented as an alternative to increasing the supply of water that can contribute to the conservation of water resources against water scarcity, not only the quality but also the quantity. The risks associated with exposure routine or accidental this alternative source should, however, be considered, so that they establish safe practices of reuse, since reusing water may have pathogens, such as viruses, bacteria, protozoa and helminths. The present study aimed to quantitatively evaluate the microbiological risks of different sources of exposure of users to E. coli in untreated gray water, in order to define a range of Maximum Values Allowed (MVA) through the concept of acceptable risk 10-3 and 10-6 pppy (per person per year), for the various purposes of reuse. To this end, we evaluated the exposure, the dose -response and the probability of infection for different purpose reuse. The beta-Poisson model was used to assess the likehood of infection. The infective dose (N50), the concentration of microorganisms, the route of exposure, the volumes ingested (accidentally and roubinely), the parameters of agent-host interaction (α and β), and the frequency of exposure were evaluated from one systematic compilation of literature. And, through Quantitative Microbiological Risk Assessment (QMRA), the greatest risk of infection identified resulted from the reuse of greywater mixed for the purpose of bathing and irrigation of food crops through food intake, resulting in risk of approximately 9,9 out of ten people exposed individuals, without considering the effects dilution water. This situation has resulted in MVA 5.25 to 105 MPN/100 mL and 3.95 to 39.5 MPN/100 mL, respectively, to an acceptable risk of 10-3 ppy and 0.00 to 0.10 MPN/100 mL and 0.00 to 0.04 MPN/100mL simultaneously to risk of 10-6 pppy. The lowest risk of infection was due... (Complete abstract click electronic access below)
6

Optimising the use of small-scale greywater treatment plants in South Africa

Natha, Shaym 26 June 2015 (has links)
M.Ing. (Civil Engineering) / To relieve the extreme pressure placed on overburdened water and wastewater infrastructure, the reuse of light wastewater was identified as a possible source of water supply for non-potable applications. The light wastewater discharge intercepted on-site can be recycled, treated and thereafter distributed to fixtures for agricultural, sanitation and gardening based activities. Sources for this light wastewater stream includes bathroom showers, bath tubs, hand wash basins including that of kitchens, laundry and washing machine outflows of recyclable quality. This type of re-usable water is called greywater (GW). This on-site re-use concept has potential to offer greater potable water savings if correctly implemented. For the purpose of this research, this particular type of waste stream excluding the kitchen and laundry discharge was the water source considered for the supply to this greywater treatment plant (GWTP). In 2009, the Water Research Commission (WRC) funded a greywater pilot study in a joint venture between the University of Witwatersrand (WITS) and the University of Johannesburg (UJ). Over the last few years, this project had progressed with new outcomes each year. The pilot GWTP at Unit 51, Student Town, UJ in Auckland Park was used for the purpose of this study. The selected reuse application for the GW effluent was for toilet flushing. GW was supplied to two toilets in a residential student complex housing 16 female and male students i.e. 8 students on each floor. The highlights of the WRC study included: a lack of satisfactory treatment efficiency and a well-defined protocol to address the problems associated with the slightly poor quality of effluent produced (i.e. unpleasant odours, greyish appearance and the unacceptable microbial count). Determining and addressing the user perceptions and user education about GW usage, respectfully, was a significant component in the successful management of the project. In this report, a practical evaluation of three crucial components of the GWTP was completed. These three components viz. treatment efficiency, user perceptions and quality standards, were common aspects of concern for existing decentralised GWTP’s within residential or small commercial stands.
7

Quantifying the benefits of greywater systems

Wickstead, Frank Anthony 05 April 2011 (has links)
This thesis offers a decision support framework to establish the economic feasibility associated with considering the installation of a greywater system. Because of the potential dangers and lack of widespread knowledge of greywater systems, the study begins by providing an explanation of current greywater technology to include the history of the technology, an explanation of greywater as opposed to reclaimed water, the potential risks of greywater use, and the necessary components of a greywater system. This decision support framework can be used with any scale of greywater system to be installed within any scale of facility. The example of an typical Atlanta, Georgia, USA multifamily rental development is used within the study to explain the framework by showing a working model. The need for water conservation in Georgia is shown and how greywater use dovetails with the need to lower overall usage. The legality of greywater use in Georgia along with the specific legal uses is also shown. The findings are then made State of Georgia and use specific to a multifamily development. The decision support framework provided is a viable tool. The sample framework in chapter 5 shows that the implementation of a greywater unit in the sampled facility would save 5,060,739.6 gallons of potable water per year with a 10.49 year payback cycle.
8

Investigation of anaerobic up-flow batch reactor for treatment of greywater in un-sewered settlements.

Muanda, Christophe January 2009 (has links)
Masters Thesis / Un-sewered settlements are provided with the basic water and sanitation systems that comprise, in most cases, of dry sanitation and standpipes. Substantial amounts of wastewater (including greywater) generated from households are discarded untreated into streets, open spaces between shacks, streams and rivers due to the lack of adequate disposal or treatment infrastructures. The negative impacts from unsafe disposal of greywater generated in un-sewered settlements affect both human health and the general environment. Several treatment technologies ranging from the simplest to the more sophisticated have been developed and made available for consideration to deal with the adverse impacts caused by the unsafe discharge of greywater. Some of these treatment technologies have been implemented successfully in certain developing countries worldwide. Amongst these is the anaerobic up-flow batch reactor (AnUBR) which was successfully used for the first time to treat greywater from sewered areas in Jordan, Lebanon and Sri Lanka. The AnUBR has emerged as a localised greywater treatment technology alternative to conventional treatment methods in areas not served by sewer networks. This technology holds promise because of its simplicity of design, high pollutant removal efficiency, absence of energy or chemical consumption, ease with which it can be implemented, cost effectiveness, and low operation and maintenance costs. This technology was originally developed for treating sewage and high strength greywater from hotels. Recently it was further pioneered by INWRDAM (Inter-Islamic Network on Water Resources Development and Management) in the treatment of greywater from sewered areas of developing countries. This technology has not been tested in un-sewered settlements of developing countries which are characterised by the lack of disposal infrastructures despite being suitable for tropical countries. This treatment system is able to produce effluent that meets the quality standard for discharge and irrigation. However, new applications of the AnUBR require further investigation in order to ascertain its feasibility and evaluate its performance in the un-sewered settlement context. Given the promising results reported for the AnUBR application for greywater treatment, this study aims to investigate the performance of the AnUBR as an alternative technology for the treatment of greywater generated in un-sewered settlements and its application in developing countries. A laboratory scale plant encompassing the AnUBR was designed, constructed and investigated using influent greywater collected from two selected case study settlements representing sewered and un-sewered areas. The plant was operated for 20 consecutives days using greywater from both selected sites separately. The influent greywater was analysed prior to feeding the plant and fed intermittently by batch as per designed feeding schedule. The performance of the AnUBR was evaluated mainly by analysing the quality of effluent produced, while the typical application was recommended based on the ability of the plant to produce effluent complying with local regulations and ability to treat greywater regardless of its source. The daily characteristics of influent greywater from both sites during the period of investigation were found to be as follows: temperature: 24 – 29ºC, pH: 7.1 – 7.2, TSS: 117.72 – 2,246.6mg/l, TN: 5.66 – 12.29mg/l, TP: 12.27 – 116.46mg/l, COD: 223.17 – 1,135.32mg/l, BOD5: 98.0 – 383.6mg/l, O&G: 52.22 – 475.29mg/l, e-coli: 8.87x104 – 2.17x107cfu/100ml, and Faecal coliform: 1.49x105 – 2.41x107cfu/100ml. The AnUBR managed to treat greywater to a quality that comply with the general standards for discharge into natural water resources. The final effluent showed a significant decrease in the level of pollutants from the initial values presented above to the following: temperature: 27 – 29 ºC, pH: 7.1 – 7.2, TSS: 5.12 – 12.82mg/l, TN 0.91 – 1.09mg/l, TP: 0.93 – 7.47mg/l, COD: 24.67 – 40.45mg/l, BOD5: 8.59 – 16.0mg/l, O&G: 1.15 – 1.72mg/l, e-coli: 213.3 – 1.12x103cfu/100ml, and Faecal coliform: 461.6 – 1.5x103cfu/100ml. Results obtained showed that the quality of influent greywater (from un-sewered settlements) is similar regardless of the water and sanitation technology. Following the operation of the AnUBR, significant removal of pollutants was observed in all processes. The overall removal efficiency averaged 80 to 95% for O&G and TSS respectively and 50 to 85% for TN and TP. The COD and BOD5 removal averaged 70 to 85% while that of micro-organisms averaged 90 to 99%. However, despite the high removal efficiency recorded the AnUBR may still require a post treatment step in order to improve the quality of effluent. It was concluded that the AnUBR is a viable alternative greywater treatment technology for un-sewered settlements, households or businesses such as hotels and restaurants. The AnUBR is able of treating high polluted greywater to effluent of quality that meets the standards for discharge or reuse provided a post treatment to ensure the complete killing of pathogenic organisms. The result of this study confirms the performance of the AnUBR for the treatment of greywater and provides an understanding of its concept as an alternative to conventional treatment and its application in un-sewered settlements based on local practical investigations.
9

Performance of a horizontal roughing filtration system for the pretreatment of greywater

Mtsweni, Sphesihle January 2016 (has links)
Submitted in fulfillment for the requirements of the degree of Master of Engineering, Department of Chemical Engineering, Durban University of Technology, KwaZulu-Natal, South Africa, 2016. / A large fraction of the world's population, around 1.1 billion people, do not have access to acceptable sources of water. In South Africa there is a growing pressure on the available freshwater resources. New sources of freshwater supply are becoming increasingly scarce, expensive or politically controversial. This has led to large scale interest in the application of water reclamation and reuse of domestic, mining and industrial wastewater as an alternative water supply sources. This is becoming critical to sustain development and economic growth in the Southern African region. This research aims at providing both social and scientific information on the importance of greywater reuse and recycling as an alternate source to aid water demand management under South African conditions. The approach to this research work was divided into two main thrusts: the first was to gain an understanding of the public attitudes towards the idea of reusing greywater that is usually perceived as wastewater which pose health concerns. The second was to provide an understanding of typical greywater quality in a peri-urban community in Durban, South Africa as well as investigate the suitability of a horizontal roughing filtration system in reducing pollutant strength of contaminants found in greywater for non-potable reuse applications. In order to achieve the central aim of this research study, the following objectives were considered: • Investigation of public perception and attitudes towards the reuse of greywater. • Determination of greywater quality in a peri-urban community in Durban South Africa. • Investigation of the performance of a horizontal roughing filtration system for the treatment of greywater collected from a peri-urban community in Durban, South Africa. It was important to have an understanding of public perception and attitudes towards the reuse of greywater because of the fact that the success of any reuse application depends on the acceptance of the public. The methodological approach for this aspect of the research work involved administering of structured questionnaires to residents within the community through field visits. The questionnaire addressed issues related to attitudes towards the reuse of greywater, perceived advantages related to the reuse of greywater and concerns related to public health issues regarding the reuse of greywater. The successful implementation of any greywater treatment process depends largely on its characteristics in terms of the pollutant strength. The methodological approach for this aspect of the research work involved physico- chemical characterization of the greywater collected from different sources within the households in the peri-urban community. Greywater samples were collected from the kitchen, shower and laundry within each of the households. This aspect of the research work was undertaken to gain an understanding of greywater quality from different sources within and between households. In order to achieve the third objective of this research work, a pilot plant horizontal roughing filtration system was designed and fabricated for the treatment of greywater. The system consisted of three compartments containing different sizes of gravel that served as the filter media. This was done in order to investigate the effect of varying filter media size on the performance of the horizontal roughing filtration system in treating greywater. The system had an adjustable manual valve used in varying the filtration rate. The impact of varying filtration rate on the performance of the horizontal roughing filtration system in treating greywater was also investigated. The main findings of this research were: • From the survey conducted, the percentage of the public willing to accept the reuse of greywater within the community was far higher than the percentage opposing its reuse. Concerns have often been expressed by the public that the reuse of greywater could pose possible adverse effects to public health. However, in this pilot study it was found that a higher percentage of respondents (>60%) disagree that the reuse of greywater could negatively impact on public health compared to less than 20% of the respondents that agree. An interesting finding of this study was that a greater percentage of the respondents were willing to have a dual water distribution system installed in their current place of residence. • The physico-chemical characterization of greywater from different sources within the households investigated indicated that, the quality of greywater varies considerably between all sources and from household to household. None of the households investigated produced the same quality of greywater. It was also found that greywater generated from the kitchen contains the most significant pollutants in terms of the physico-chemical parameters considered in this study compared to the other sources within the household. • The pilot plant horizontal roughing filtration system demonstrated its suitability for the treatment of greywater for non-potable reuse applications. It was observed that 90% turbidity and 63% Chemical Oxygen Demand reduction was achieved over the entire duration of operation of the horizontal roughing filter. It was also observed that the removal efficiency was significantly higher in the compartment with the smallest filter media size and the removal efficiency was significantly higher at lower filtration rates. It is therefore concluded from the investigation conducted in this research that the role of the public is a vital component in the development and implementation of any reuse system / application. It was found that there was a relatively high level of acceptance for the reuse of greywater among the respondents within the community where the study was conducted. The greywater characteristics results obtained from this investigation indicated the necessity of treatment prior to disposal in the environment. Also, a low BOD5/COD ratio of 0.24, which is significantly lower than 0.5, is an indication that the greywater generated from the community cannot be easily treated using biological treatment processes and/or technologies. The pilot horizontal roughing filtration system used for the treatment of greywater in this study demonstrated its suitability for the treatment of greywater for non-potable reuse applications such as irrigation, toilet flushing and washing activities. / M
10

Viability Study Of A Residential Integrated Stormwater, Graywater, And Wastewater Treatment System At Florida's Showcase Green Envirohome

Goolsby, Matthew Allen 01 January 2011 (has links)
The subject of water scarcity and the rate of water consumption has become popular topics over the last few decades. It is possible that society may consume or contaminate much of the remaining readily available water if there is not a paradigm shift. This deep rooted concern has prompted investigations to identify alternative water use and treatment methods. Within this report, information is presented from the use of innovative water harvesting and on-site sewage treatment and disposal systems (OSTDS) at Florida’s Showcase Green Envirohome (FSGE.net), while also addressing low impact development (LID) practices. FSGE is a residential home that demonstrates methods that use less water and reduce pollution. Population increases have more than just an effect on the volume of water demanded. Adverse impacts on surface and groundwater quality are partially attributed to current design and operation of OSTDS. Nutrient loading from wastewater treatment systems may be a concern where numerous OSTDS are located within nutrient sensitive environments. Groundwater nitrate concentrations have been shown to exceed drinking water standards by factors of three or greater surrounding soil adsorption systems (Postma et al., 1992, Katz, 2010). As a contribution to efforts to reduce water use and improve water quality, this study investigates the viability and effectiveness of a residential integrated stormwater, graywater, and wastewater treatment system (ISGWTS) installed and operating for over a year at FSGE. ii Within this report is a continuation of results published previously that consisted of preCertificate of Occupancy (pre-CO) data and an optimization model at the Florida’s Showcase Green Envirohome (FSGE) in Indialantic, Florida (Rivera, 2010). This current report contains 12 months of post-CO data, along with data from bench scale models of the on-site septic treatment and disposal system (OSTDS). There are two main objectives of the study. The first objective is to quantify the performance of the passive treatment Bold & GoldTM reactive filter bed (FDOH classified “innovative system”) for nutrient removal. The second objective was to monitor the water quality of the combined graywater/stormwater cistern for non-potable use and assess the components (green roof, gutters, graywater piping). The performance of the passive innovative system is compared to past studies. Also a bench scale model that is constructed at the University of Central Florida (UCF) Stormwater Management Academy Research and Testing Lab (SMART Lab) is operated to provide data for two different retention times. Complex physical, biological, and chemical theories are applied to the analysis of wastewater treatment performance. The data from the OSTDS and stormwater/graywater cistern are assessed using statistical methods. The results of the OSTDS are compared to FDOH regulatory requirements for “Secondary Treatment Standards”, and “Advanced Secondary Treatment Standards” with promising results. The bench scale results verify that both nitrogen and phosphorus removal are occurring within the filter media and most likely the removals are due to iii biological activity as well as physiochemical sorption. The flow into the OSTDS has been reduced with the use of separate gray water system to only 29 gallons per person per day (gpcd). After the FSGE certificate of occupancy and for one year using the Bold & Gold Biosorption Activated Media (BAM), the TSS, BOD5, and CBOD5 are below the required 10 mg/L for the FDOH classified Advanced Secondary Treatment Systems. The effluent for the conventional drain field TSS, BOD5, and CBOD5 are above 10 mg/L (29.6, 35.7, and 29.0 mg/L). The effluent total nitrogen and total phosphorus for the innovative system are 29.7 mg/L and 4.1 mg/L, which are not low enough for the 20 mg/L nitrogen requirements, but are below the 10 mg/L phosphorus requirements. The conventional drain field has an effluent total nitrogen concentration of 70.1 mg/L and an effluent total phosphorus concentration of 10.6 mg/L, which both fail to meet FDOH Advanced Secondary Treatment requirements. The high nitrogen in the effluent can be attributed to high influent concentrations (about 3 times the average at about 150 mg/L). Longer residence times are shown to produce a removal greater than 90%. Also, nitrate average levels were below the 10 mg/L standard. The combined stormwater/graywater cistern is analyzed against irrigation standards. The graywater is filtered and disinfected with ozone to provide safe water for reuse. Nutrient concentrations are measured to compare with regulatory standards. For irrigation standards, salinity in the form of sodium, calcium, and magnesium are measured. Although high sodium adsorption ratio (SAR) and electrical conductivity (EC) values were recorded, their adverse iv impact on the vegetation has not been observed. . The only observed effect within the home to date is scale formation in the toilet. The use of potable water in FSGE is reduced to 41 gpcd using the integrated stormwater and graywater system. A minor volume of backup artesian well water was added to the cistern during the one year home occupancy phase. Based on less use of potable water and at the current potable water cost rate, the integrated stormwater and graywater system at FSGE will save the typical homeowner about $215 per year. If irrigation were used more often from the cistern, the cost savings in reduced potable water used for irrigation would increase the savings. The treatment cost for B&G BAM over a 40 year period of time based on a flow of 29 gpcd (as measured at FSGE) and for 4 persons is $2.07 per thousand gallons treated. The yearly cost of treatment is about $87.65. There is a reduction in potable water use estimated at 64% of the sewage flow (or 18.5 gpcd) which equates to about 27 thousand gallons in one year. The current average cost of potable water is $4.40 per thousand gallons. Based on reduced potable water usage, the savings per year are about $118.84. Thus the yearly savings in potable water cost ($118.84) offsets the cost of OSTDS treatment at FSGE for nutrient control ($87.65) using the data collected at FSGE. This comparison does not include the inflation cost of water over time. There is also an environmental preservation intangible cost (not quantifiable from this study) from reduced surface runoff and reduced pollutant discharges.

Page generated in 0.4743 seconds