• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The ghost of mathematicians past : tradition and innovation in Pappus' #Collectio Mathematica'

Cuomo, Serafina January 1995 (has links)
No description available.
2

The Significance of the mathematical element in the philosophy of Plato ... /

Miller, Irving Elgar, January 1904 (has links)
Thesis (Ph. D.)--University of Chicago, 1904. / Includes bibliographical references (p. 93). Also available on the Internet.
3

Mathematical reasoning in Plato's Epistemology

Orton, Jane January 2014 (has links)
According to Plato, we live in a substitute world. The things we see around us are shadows of reality, imperfect imitations of perfect originals. Beyond the world of the senses, there is another, changeless world, more real and more beautiful than our own. But how can we get at this world, or attain knowledge of it, when our senses are unreliable and the perfect philosophical method remains out of reach? In the Divided Line passage of the Republic, Plato is clear that mathematics has a role to play, but the debate about the exact nature of that role remains unresolved. My reading of the Divided Line might provide the answer. I propose that the ‘mathematical’ passages of the Meno and Phaedo contain evidence that we can use to construct the method by which Plato means us to ascend to knowledge of the Forms. In this dissertation, I shall set out my reading of Plato’s Divided Line, and show how Plato’s use of mathematics in the Meno and Phaedo supports this view. The mathematical method, adapted to philosophy, is a central part of the Line’s ‘way up’ to the definitions of Forms that pure philosophy requires. I shall argue that this method is not, as some scholars think, the geometric method of analysis and synthesis, but apagōgē, or reduction. On this reading, mathematics is pivotal on our journey into the world of the Forms.
4

Conjugate diameters: Apollonius of Perga and Eutocius of Ascalon

McKinney, Colin Bryan Powell 01 July 2010 (has links)
The Conics of Apollonius remains a central work of Greek mathematics to this day. Despite this, much recent scholarship has neglected the Conics in favor of works of Archimedes. While these are no less important in their own right, a full understanding of the Greek mathematical corpus cannot be bereft of systematic studies of the Conics. However, recent scholarship on Archimedes has revealed that the role of secondary commentaries is also important. In this thesis, I provide a translation of Eutocius' commentary on the Conics, demonstrating the interplay between the two works and their authors as what I call conjugate. I also give a treatment on the duplication problem and on compound ratios, topics which are tightly linked to the Conics and the rest of the Greek mathematical corpus. My discussion of the duplication problem also includes two computer programs useful for visualizing Archytas' and Eratosthenes' solutions.
5

A study in geometric construction

McClain, Nichola Sue 01 January 1998 (has links)
No description available.
6

O potencial heurístico dos três problemas clássicos da matemática grega / The heuristic potential of the three classical problems of Greek mathematics

Gervázio, Suemilton Nunes 15 December 2015 (has links)
Este trabalho consiste em uma pesquisa acerca da análise do potencial heurístico resultado da não solução dos três problemas clássicos da matemática grega, via regra do uso exclusivo do compasso e da régua não graduada. Para uma melhor compreensão deste potencial, apresentaremos o histórico de tais problemas, fazendo posteriormente uma síntese geral sobre as principais concepções de filósofos e matemáticos sobre Heurística. Em seguida, demonstraremos algumas soluções alternativas para estes problemas, identificando nelas processos heurísticos. Finalmente introduziremos tais processos na resolução de problemas matemáticos, acompanhadas de possíveis implicações pedagógicas para o ensino dessa ciência. / This work consists of research about the potential of heuristic analysis result of no solution of the three classical problems of Greek mathematics, via rule of exclusive use of the compass and no graduated scale. For a better understanding of this potential, it presents the history of such problems, then making a general overview about the main ideas of philosophers and mathematicians on Heuristics. Then we demonstrate some alternative solutions to these problems, identifying them heuristic processes. Finally we introduce such processes in mathematical problem solving, accompanied by possible pedagogical implications for the teaching of science.
7

O potencial heurístico dos três problemas clássicos da matemática grega / The heuristic potential of the three classical problems of Greek mathematics

Suemilton Nunes Gervázio 15 December 2015 (has links)
Este trabalho consiste em uma pesquisa acerca da análise do potencial heurístico resultado da não solução dos três problemas clássicos da matemática grega, via regra do uso exclusivo do compasso e da régua não graduada. Para uma melhor compreensão deste potencial, apresentaremos o histórico de tais problemas, fazendo posteriormente uma síntese geral sobre as principais concepções de filósofos e matemáticos sobre Heurística. Em seguida, demonstraremos algumas soluções alternativas para estes problemas, identificando nelas processos heurísticos. Finalmente introduziremos tais processos na resolução de problemas matemáticos, acompanhadas de possíveis implicações pedagógicas para o ensino dessa ciência. / This work consists of research about the potential of heuristic analysis result of no solution of the three classical problems of Greek mathematics, via rule of exclusive use of the compass and no graduated scale. For a better understanding of this potential, it presents the history of such problems, then making a general overview about the main ideas of philosophers and mathematicians on Heuristics. Then we demonstrate some alternative solutions to these problems, identifying them heuristic processes. Finally we introduce such processes in mathematical problem solving, accompanied by possible pedagogical implications for the teaching of science.

Page generated in 0.0731 seconds