• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 19
  • 8
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 95
  • 95
  • 48
  • 38
  • 35
  • 35
  • 33
  • 33
  • 30
  • 26
  • 24
  • 23
  • 22
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Performance improvement of a grid-connected microgrid system using superconductive fault current limiters

Mousa, Mohammed A 01 May 2020 (has links)
For effective operation of microgrid systems (MGSs), it is important to understand the major types of power grid failures and how to deal with them. Detecting the fault, locating it, and isolating the faulty line are important to avoid damaging components and interrupting the service for customers. This will also improve the reliability and protection level of the system during fault conditions. Among the most successful protection methods to limit fault currents in power systems is the fault current limiter (FCL). The FCL improves the reliability of the system, voltage stability, and the fault current reduction. However, limited researches consider its applications inMGSs. The location and impedance size of the FCL play a major role in limiting fault currents in the system. Several studies concluded that installing FCLs near all generators, transformers, or loads in the system enhanced the performance of the system during fault conditions. However, increasing the number of FCLs in the system leads to an increase in cost. This dissertation proposes several effective approaches to specify the optimal locations and impedance values of the required number of installed FCLs in a grid-connected MGS. These FCLs improve the reliability and the protection level of the system by limiting fault currents during fault conditions. The goal is to reduce the required number of installed FCLs in the system. These installed FCLs must be able to reduce fault currents under the interrupting ratings of circuit breakers in the system. This goal will lead to lower the cost of installed protection devices in the system. In order to achieve this goal, this dissertation presents a novel fault management approach, sensitivity analysis, and an optimization model to find the optimal solutions. The study of this dissertation is meant to be used during the planning stage of power distribution system design. The results of this dissertation prove the robustness of the proposed approaches. This enhances the system’s performance while minimizing the required number of installed FCLs. Their sizes limit fault currents within safe ranges. Thus, the FCL significantly improves the reliability and protection scheme of the grid-connected MGS.
42

Partitioning And Interface Requirements Between System And Application Control For Power Electronic Converter Systems

Kondabathini, Anil Kumar 11 December 2009 (has links)
Applications of power electronics in power systems are growing very rapidly and changing the power system infrastructure in terms of operation speed and control. Even though applications of power electronics are wide spread, the cost and reliability of power electronics are the issues that could hinder their penetration in the utility and industrial systems. The demand for efficient and reliable converter controllers gave rise to modularized converter and controller design. The objective of this dissertation is to determine the appropriate partitioning and interface requirements between the system and application control layers for power electronic converters so that the minimum set of system layer to application layer control interfaces is compatible across all power electronic controllers. Previous work, using the Open System Architecture (OSA) concept has shown that there is a set of common functions shared by different converters at the low-level control layers. It has also shown that, depending on the application, there is a variation in control functions in application/middle control layers. This functional variation makes it difficult to define system functionality of power converters at upper control layers and further complicates the investigation into the partition requirements of system to application control layer. However, by analyzing the current or voltage affected by a converter in terms of orthogonal components, where each component or group of components is associated with a power-converter application, and the amount of required DC bus energy storage, a common functionality can be observed at the application control layer. Therefore, by establishing common functionality in terms of affected current or voltage components, a flexibility of operation can be realized at upper control layers that will be a major contribution towards standardizing the open system architecture. In order to a construct functional flexible power converter control architecture, the interface requirements to the system control layer and the partitioning between the system control layer and application control layer need to be explored. This will provide flexibility of system design methodology by reducing the number of constraints and enabling system designers to explore possible system architectures much more effectively.
43

Improved renewable energy power system using a generalized control structure for two-stage power converters

Kim, Rae-Young 28 September 2009 (has links)
The dissertation presents a generalized control structure for two-stage power converters operated in a renewable energy power system for smart grid and micro grid systems. The generalized control structure is based on the two-loop average-mode-control technique, and created by reconstructing the conventional control structure and feedback configuration. It is broadly used for both dc-dc and dc-ac power conversion based on the two-stage converter architecture, while offering several functionalities required for renewable energy power systems. The generalized control structure improves the performance and reliability of renewable energy power systems with multiple functionalities required for consistent and reliable distributed power sources in the applications of the smart grid and micro grid system. The dissertation also presents a new modeling approach based on a modification of the subsystem-integration approach. The approach provides continuous-time small-signal models for all of two-stage power converters in a unified way. As a result, a modeling procedure is significantly reduced by treating a two-stage power converter as a single-stage with current sinking or sourcing. The difficulty of linearization caused by time-varying state variables is avoided with the use of the quasi-steady state concept. The generalized control structure and modeling approach are demonstrated using the two-stage dc-dc and dc-ac power conversion systems. A battery energy storage system with a thermoelectric source and a grid-connected power system with a photovoltaic source are examined. The large-signal averaged model and small-signal model are developed for the two demonstrated examples, respectively. Based on the modeling results, the control loops are designed by using frequency domain analysis. Various simulations and experimental tests are carried out to verify the compensator designs and to evaluate the generalized control structure performance. From the simulation and experimental results, it is clearly seen that the generalized control structure improves the performance of a battery energy storage system due to the unified control concept. The unified control concept eliminates transient over-voltage or over-current, extra energy losses, power quality issues, and complicated decision processes for multiple-mode control. It is also seen that the generalized control structure improves the performance of a single-phase grid-connected system through increased voltage control loop bandwidth of the active ripple current reduction scheme. As a result of the increased loop bandwidth, the transient overshoot or undershoot of the dc-link voltage are significantly reduced during dynamic load changes. / Ph. D.
44

Circuits and Modulation Schemes to Achieve High Power-Density in SiC Grid-connected Converters

Ohn, Sungjae 16 May 2019 (has links)
The emergence of silicon-carbide (SiC) devices has been a 'game changer' in the field of power electronics. With desirable material properties such as low-loss characteristics, high blocking voltage, and high junction temperature operation, they are expected to drastically increase the power density of power electronics systems. Recent state-of-the-art designs show the power density over 17 ; however, certain factors limit the power density to increase beyond this limit. In this dissertation, three key factors are selected to increase the power density of SiC-based grid-connected three-phase converters. Throughout this dissertation, the techniques and strategies to increase the power density of SiC three-phase converters were investigated. Firstly, a magnetic integration method was introduced for the coupled inductors in the interleaved three-phase converters. Due to limited current-capacity compared to the silicon insulated-gate bipolar transistors (Si-IGBTs), discrete SiC devices or SiC modules, operate in parallel to handle a large current. When three-phase inverters are paralleled, interleaving can be used, and coupled inductors are employed to limit the circulating current. In Chapter 2, the conventional integration method was extended to integrate three coupled inductors into two; one for differential-mode circulating current and the other for common-mode circulating current. By comparing with prior research work, a 20% reduction in size and weight is demonstrated. From Chapter 3 to Chapter 5, a full-SiC uninterruptible power supply (UPS) was investigated. With the high switching frequency and fast switching dynamics of SiC devices, strategies on electromagnetic inference become more important, compared to Si-IGBT based inverters. Chapter 3 focuses on a common-mode equivalent circuit model for a topology and pulse width modulation (PWM) scheme selection, to set a noise mitigation strategy in the design phase. A three terminal common-mode electromagnetic interference (EMI) model is proposed, which predicts the impact of the dc-dc stage and a large battery-rack on the output CM noise. Based on the model, severe deterioration of noise by the dc-dc stage and battery-rack can be predicted. Special attention was paid on the selection of the dc-dc stage's topology and the PWM scheme to minimize the impact. With the mitigation strategy, a maximum 16 dB reduction on CM EMI can be achieved for a wide frequency range. In Chapter 4, an active PWM scheme for a full-SiC three-level back-to-back converter was proposed. The PWM scheme targets the size reduction of two key components: dc-link capacitors and a common-mode EMI filter. The increase in switching frequency calls for a large common-mode EMI filter, and dc-link capacitors in the three-level topology may take a considerable portion in the total volume. To reduce the common-mode noise emission, different combinations of the voltage vectors are investigated to generate center-aligned single pulse common-mode voltage. By such an alignment of common-mode voltage with different vector combinations, noise cancellation between the rectifier and the inverter can be maximally utilized, while the balancing of neutral point voltage can be achieved by the transition between the combinations. Also, to reduce the size of the dc-link capacitor for the three-level back-to-back converter, a compensation algorithm for neutral point voltage unbalance was developed for both differential-mode voltage and the common-mode voltage of the ac-ac stage. The experimental results show a 4 dB reduction on CM EMI, which leads to a 30% reduction on the required CM inductance value. When a 10% variation of neutral point voltage can be handled, the dc-link capacitance can be reduced by 56%. In Chapter 5, a 20 kW full-SiC UPS prototype was built to demonstrate a possible size-reduction with the proposed PWM scheme, as well as a selection of topologies and PWM schemes based on the model. The power density and efficiency are compared with the state-of-the-art Si-IGBT based UPSs. Chapter 6 seeks to improve power density by a change in a modulation method. Triangular conduction mode (TCM) operation of the three-level full-SiC inverter was investigated. The switching loss of SiC devices is reported to be concentrated on the turn-on instant. With zero-voltage turn-on of all switches, the switching frequency of a three-level three-phase SiC inverter can be drastically increased, compared to the hard-switching operation. This contributes to the size-reduction of the filter inductors and EMI filters. Based on the design to achieve a 99% peak efficiency, a comparison was made with a full-SiC three-level inverter, operating in continuous conduction mode (CCM), to verify the benefit of the soft switching scheme on the power density. A design procedure for an LCL filter of paralleled TCM inverters was developed. With 3.5 times high switching frequency, the total weight of the filter stage of the TCM inverter can be reduced by 15%, compared to that of the CCM inverter. Throughout this dissertation, techniques for size reduction of key components are introduced, including coupled inductors in parallel inverters, an EMI filter, dc-link capacitors, and the main boost inductor. From Chapter 2 to 5, the physical size or required value of these key components could be reduced by 20% to 56% by different schemes such as magnetic integration, EMI mitigation strategy through modeling, and an active PWM scheme. An optimization result for a full-SiC UPS showed a 40% decrease in the total volume, compared to the state-of-the-art Si-IGBT solution. Soft-switching modulation for SiC-based three-phase inverters can bring a significant increase in the switching frequency and has the potential to enhance power-density notably. A three-level three-phase full-SiC 40 kW PV inverter with TCM operation contributed to a 15% reduction on the filter weight. / Doctor of Philosophy / The power density of a power electronics system is regarded as an indicator of technological advances. The higher the power density of the power supply, the more power it can generate with the given volume and weight. The size requirement on power electronics has been driven towards tighter limits, as the dependency on electric energy increases with the electrification of transportation and the emergence of grid-connected renewable energy sources. However, the efficiency of a power electronics system is an essential factor and is regarded as a trade-off with the power density. The size of power electronics systems is largely impacted by its magnetic components for filtering, as well as its cooling system, such as a heatsink. Once the switching frequency of power semiconductors is increased to lower the burden on filtering, more loss is generated from filters and semiconductors, thus enlarging the size of the cooling system. Therefore, considering the efficiency has to be maintained at a reasonable value, the power density of Si-based converters appears to be saturated. With the emergence of wide-bandgap devices such as silicon carbide (SiC) or gallium nitride (GaN), the switching frequency of power devices can be significantly increased. This is a result of superior material properties, compared to Si-based power semiconductors. For grid-connected applications, SiC devices are adopted, due to the limitations of voltage ratings in GaN devices. Before commercial SiC devices were available, the power density of SiC- based three-phase inverters was expected to go over 20 𝑘𝑊 𝑑𝑚3 ⁄ . However, the state-of-the art designs shows the power density around 3 ~ 4 𝑘𝑊 𝑑𝑚3 ⁄ , and at most 17 𝑘𝑊 𝑑𝑚3 ⁄ . The SiC devices could increase the power density, but they have not reached the level expected. The adoption of SiC devices with faster switching was not a panacea for power density improvement. This dissertation starts with an analysis of the factors that prevent power density improvement of SiC-based, grid-connected, three-phase inverters. Three factors were identified: a limited increase in the switching frequency, large high-frequency noise generation to be filtered, and smaller but still significant magnetic components. Using a generic design procedure for three-phase inverters, each chapter seeks to frame a strategy and develop techniques to enhance the power density. For smaller magnetic components, a magnetic integration scheme is proposed for paralleled ac-dc converters. To reduce the size of the noise filter, an accurate modeling approach was taken to predict the noise phenomena during the design phase. Also, a modulation scheme to minimize the noise generation of the ac-ac stage is proposed. The validity of the proposed technique was verified by a full-SiC three-phase uninterruptible power supply with optimized hardware design. Lastly, the benefit of soft-switching modulation, which leads to a significant increase in switching frequency, was analyzed. The hardware optimization procedure was developed and compared to hard-switched three-phase inverters.
45

Powering Stability : Grid-Connected Batteries Influence on Peak Electricity Pricing

Holm, Emil, Shayeganfar, Parsa January 2024 (has links)
Battery Energy Storage Systems (BESSs) have become an increasingly popular feature of the electrical grid in the California ISO (CAISO) as a means to address the challenges posed by renewable energy variability and escalating peak demand. Due to their ability to reduce peak load demand on traditional generators and extend the benefits of the merit order effect, they have been theorized and claimed to reduce peak electricity prices. The purpose of this study is to test these claims within CAISO and understand what effects BESSs have had on peak electricity prices. Our findings show that there has been a significant decrease in prices after the introduction of BESSs into the grid although we found no significant effects of an increasing utilization of BESSs on peak electricity prices. We conclude that BESS utilization in CAISO has had no effect on peak electricity prices. We are contributing to the literature on the tangible market impacts of BESSs, highlighting the need for further empirical research in this domain.
46

Operation of Three Phase Four Wire Grid Connected VSI Under Non-Ideal Conditions

Ghoshal, Anirban January 2013 (has links) (PDF)
The necessity to incorporate renewable energy systems into existing electric power grid and need of efficient utilization of electrical energy are growing every day. A shunt connected Voltage Source Inverter(VSI) capable of bidirectional power flow and fast control has become one of the building block to address such requirements. However with growing number of grid connected VSI, new requirements related to harmonic injection, higher overall efficiency and better performances during short term grid disturbances have emerged as challenges. For this purpose a grid connected three phase four wire VSI with LCL filter can be considered as a general module to study different control approaches and system behavior under ideal and non-ideal grid conditions. This work focuses on achieving enhanced performance by analyzing effect of non-ideal conditions on system level and relating it to individual control blocks. In this work a phase locked loop structure has been proposed which is capable of extracting positive sequence fundamental phase information under non-ideal grid conditions. It can also be used in a single phase system without any structural modification. The current control for the three phase four wire VSI system has been implemented using Proportional Resonant (PR) controller in a per phase basis in stationary reference frame. A simplified controller design procedure based on asymptotic representation of the system transfer function is proposed. Using this method expressions for controller gains can be derived. A common mode model of the inverter system has been derived for low frequencies. Using this model a controller is designed to mitigate DC bus imbalance caused by sensor and ADC channel offsets. A multi-rate approach for digital implementation of PR controller with low resource consumption, that is suitable for an FPGA like digital controller ,is proposed. This multi-rate method can maintain resonance frequency accuracy even at low sampling frequency and can easily be frequency adaptive. Anti-wind up methods for PI controller have been studied to find suitable anti-wind up methods for PR controller. The tracking anti-wind up method is shown to be suitable for use with a PR controller. The effectiveness of this method under sudden disconnection and reconnection of VSI from grid is experimentally verified. A resonant integrator based second order filter is shown to be useful for active damping of LCL filter resonance with a wide range of grid inductance variation. The proposed method utilizes the LCL filter capacitor voltage to estimate resonance frequency current. Suitability of fundamental current PR controller for active damping alone, and with the proposed method show the superiority of the proposed method especially for low switching frequencies. Design oriented analysis of the above topics are included in the thesis. The theoretical understandings developed have been verified through experiments in the laboratory and can be readily implemented in industrial power electronic systems.
47

An FPGA Based MPPT and Monitoring System : suitable for a photovoltaic based microgrid

Zheng, Rongpeng January 2019 (has links)
Microgrids containing photovoltaic (PV) cells and wind power gain more and more interest. These microgrids may work in stand-alone mode ("islanding") or be conncted to the main grid. In both modes of operation, power quality must be monitored and controlled. This report focuses on microgrids and aims to implement a monitoring system based on FPGA. In the monitoring system, two applications can be achieved, firstly a PAS-MPPT algorithm in a DC-DC boost converter to improve the maximun power point tracking of a PV unit, and secondly a detection and switching system of the grid mode - stand-alone or connected to the main grid. Simulation results prove the Verilog programs in FPGA are suitable to be used in microgrids.
48

Degradação induzida pelo potencial em módulos e instalações fotovoltaicas de c-Si / Potential induced degradation on c-Si photovoltaic modules and installations

Pinto Filho, Gilberto Figueiredo 14 November 2017 (has links)
Este trabalho apresenta abordagens para a avaliação do fenômeno da Degradação Induzida pelo Potencial (PID do inglês Potential Induced Degradation) em módulos e instalações fotovoltaicas de c-Si. Nos ensaios em laboratório, a IEC TS 62804-1:2015 foi aplicada e ações adicionais são sugeridas como forma de adaptação da especificação técnica para o acompanhamento da degradação durante o ensaio e para melhor indicar a propensão do equipamento a se recuperar das consequências da aparição de PID. Nos ensaios em campo, avaliou-se a solução convencional do mercado de reverter a degradação através de circuitos anti-PID, além de apresentar a aplicação de técnicas de detecção do fenômeno em sistemas operacionais. A abordagem teórica e os resultados práticos mostram que o procedimento de aferição de tensões individuais de operação é um método útil para detectar PID. Os estudos de caso apresentados indicam que esta metodologia é eficaz inclusive na detecção precoce do fenômeno para diferentes topologias de células fotovoltaicas de c-Si. / This work presents approaches to assess the Potential Induced Degradation (PID) on c-Si photovoltaic modules and installations. The IEC TS 62804-1:2015 was applied to the laboratory tests and some additional actions are suggested. The adaptation of the technical specification aims to monitor the degradation rates during the tests and also to consider the capacity of the photovoltaic modules to recover from the degradation. In the field detection methodologies are presented and anti-PID circuits were also tested. The theoretical approach reveals that individual voltage measurements are useful to detect PID even in its early stage, as can be seen on the case studies presented.
49

Avaliação de conformidade de inversores para micro e mini geração fotovoltaica: a implantação da NBR 16150 e NBR IEC 62116 / onformity evaluation for micro and mini photovoltaic generation inverters: NBR 16150 and NBR IEC 62116 implementation

Almeida Neto, José Cesar de Souza 20 September 2017 (has links)
No Brasil, a necessidade crescente por sistemas de geração solar fotovoltaica conectados à rede de distribuição levou ao desenvolvimento de normas brasileiras para a conformidade de inversores. Assim, de forma a atender a população em geral, foi publicada a Portaria 357, de 01 de agosto de 2014, do Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), que inclui inversores para conexão à rede de potência nominal até 10 kW no Programa Brasileiro de Etiquetagem (PBE). Por possuir os equipamentos necessários para a realização dos ensaios de conformidade com a portaria 357, o Laboratório de Sistemas Fotovoltaicos (LSF) do Instituto de Energia e Ambiente da Universidade de São Paulo passa então a ser o primeiro laboratório acreditado pelo INMETRO para a realização desses ensaios. Este trabalho tem como objetivo resumir as experiências de aplicação das normas brasileiras no ensaio de inversores para o PBE no LSF, sendo levantados os resultados obtidos no ensaio de 15 inversores ao longo de três anos de operação da bancada de ensaio para sistemas conectados à rede. A partir deste levantamento conclui-se que, embora as normas brasileiras exijam rigor em seus requisitos, existem inversores capazes de atender aos requisitos normativos brasileiros, assim como existem inversores que necessitam de implementações nos respectivos firmware de controle para conseguirem atender todos os requisitos. Uma vez que as normas brasileiras são recentes, este trabalho também destaca pontos das normas que se beneficiariam de adequações no corpo do texto, a fim de melhorar as rotinas de ensaios em inversores e critérios de conformidade. / In Brazil, the increasing demand for grid-tie photovoltaic systems lead to the development of the Brazilian standards for inverter quality and evaluation. In order to meet the general population demand, the National Institute for Metrology, Quality and Technology (INMETRO) published the normative nº 357 01/08/2014 to include inverters up to 10 kW in the Brazilian Labeling Program (PBE). For having all the equipment needed for inverter conformity evaluation in accordance with the normative nº 357, the Laboratory of Photovoltaic Systems (LSF) of the Institute of Energy and Environment of the University of Sao Paulo becomes the first INMETRO accredited laboratory for conducting the inverter evaluation in Brazil. This works main goal is to summarize the experience acquired for the appliance of the Brazilian standards for inverter testing in the LSF. The results obtained for the test of 15 different inverters during the first three years operating the inverter test bench are showed. Using the data shown this work concludes that, although the Brazilian standards are rigorous on its criteria, there are inverters capable of complying with the standards requirements and there are inverters that need further software and hardware development in order to comply with all the requirements. Since the Brazilian standards are in its first version, this work also aims to point out aspects of the standard that would benefit from text revising in order to improve the test conditions and conformity criteria.
50

Análise experimental da qualidade da energia de uma microrrede fotovoltaica com back-up

Becker, Luís Rodrigo 27 March 2017 (has links)
Submitted by JOSIANE SANTOS DE OLIVEIRA (josianeso) on 2017-07-10T14:32:15Z No. of bitstreams: 1 Luís Rodrigo Becker_.pdf: 4479543 bytes, checksum: 3a9259e64d112cb88c2414eb122552e9 (MD5) / Made available in DSpace on 2017-07-10T14:32:15Z (GMT). No. of bitstreams: 1 Luís Rodrigo Becker_.pdf: 4479543 bytes, checksum: 3a9259e64d112cb88c2414eb122552e9 (MD5) Previous issue date: 2017-03-27 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / PROSUP - Programa de Suporte à Pós-Gradução de Instituições de Ensino Particulares / Este trabalho apresenta uma análise experimental de uma microrrede fotovoltaica formada por dois subsistemas, um isolado com estocagem e outro conectado à rede. Foi verificado o seu comportamento, sua capacidade no fornecimento de energia para uma carga isolada e rede da concessionária, monitorado a qualidade da energia elétrica entregue à diferentes cargas e rede da concessionária e também quantificado os índices de performance do sistema conectado. O subsistema conectado à rede (SFCR) é formado por um painel de 1080 Wp de silício multicristalino e um inversor c.c./c.a. de 1200 W. O subsistema isolado de back-up (SFI-b) é formado por um painel de 600 Wp de silício monocristalino, controlador de carga, banco de estocagem com baterias chumbo-ácido 24 V / 210 Ah e um inversor off-grid c.c./c.a. de 1000 W. O comportamento e a capacidade do sistema são monitorados durante o atendimento de uma carga, representada por um refrigerador. A qualidade da energia é analisada através de medições de energia ativa, reativa e aparente, fator de potência e geração de correntes harmônicas pelos inversores. O SFI-b é monitorado atendendo diferentes tipos e regimes de cargas. Já o SFCR é monitorado em dias de céu claro, parcialmente encobertos e encobertos. Os índices de performance são calculados em dias de céu claro e parcialmente encoberto ao longo dos seis primeiros meses de 2016. Os resultados demonstram que o SFI-b é capaz de atender a carga de forma confiável, comutando-a automaticamente para a concessionária quando o banco de baterias atinge uma profundidade de descarga pré-definida, enquanto o SFCR injeta a energia produzida na rede da concessionária. Os indicadores de qualidade da energia do inversor do SFI-b mostraram-se adequados, permanecendo dentro dos limites citados na legislação e análogos aos apresentados pela rede da distribuidora local. Já o inversor do SFCR apresentou indicadores de qualidade de energia satisfatórios, também na maior parte do tempo dentro dos limites citados na legislação, exceto nos dias encobertos e períodos de baixa irradiância, constatando-se significativa geração de energia reativa e distorções harmônicas de corrente. Considerando a média entre dias de céu claro e parcialmente encoberto, a eficiência média global do SFCR é de 9,9% e a energia média diária entregue à rede é de 4,7 kWh. Foi verificado que a qualidade da energia produzida pelo SFI-b praticamente independe da irradiância, já o SFCR depende diretamente da irradiância e do nível de carregamento do inversor, na geração de uma energia de qualidade. / This work presents an experimental analysis of a photovoltaic micro-grid formed by two subsystems, one off-grid with storage and another grid-connected. It is intended to verify its operation, its capacity to supply power to an isolated charge and electric utility grid, to monitor the quality of the electric power delivered to different charges and the electric grid power, and also to quantify the performance indexes of the connected system. The grid-connected subsystem (SFCR) consists of a panel of 1080 Wp of multicrystalline silicon and a DC/AC. inverter of 1200 W. The off-grid subsystem of back-up (SFI-b) consists of a 600 Wp monocrystalline silicon panel, charge controller, lead-acid battery storage bench 24 V / 210 Ah, and a DC/AC inverter of 1000 W. The operation and capacity of the system are monitored during the supply of a charge, represented by a refrigerator. The quality of the energy is analyzed through measurements of active, reactive and apparent energy, power factor and generation of harmonic currents by the inverters. SFI-b is monitored for different types and charges regimes, and SFCR is monitored on clear sky, partially and totally cloudy days. Performance indexes are calculated on clear sky and partly cloudy days over the first six months of 2016. The results demonstrate that the SFI-b is capable of servicing the charge reliably, switching it automatically to the utility grid when the batteries bank reaches a predetermined discharge depth, while the SFCR injects the power produced in power line grid. The energy quality indicators of the SFI-b inverter were adequate, staying inside the limits mentioned in the legislation, and analogous to those presented by the power line grid of the local distributor. The SFCR inverter presented satisfactory energy quality indicators, also in most of the time inside the limits mentioned in the legislation, except for the cloudy days and periods of low irradiance, showing significant reactive energy generation and current harmonic distortions. Considering the average between clear and partially cloudy days, the global average efficiency of SFCR is 9,9%, and the average daily energy injected on the grid is 4,7 kWh. It was verified that the quality of the energy produced by the SFI-b practically independent of the irradiance, but the SFCR depends directly on the irradiance and the load level of the inverter, in the quality energy generation.

Page generated in 0.0456 seconds