Spelling suggestions: "subject:"grothendieck groups"" "subject:"groethendieck groups""
1 |
Algebraic structures on Grothendieck groups of a tower of algebras /Li, Huilan. January 2007 (has links)
Thesis (Ph.D.)--York University, 2007. Graduate Programme in Mathematics. / Typescript. Includes bibliographical references (leaves 113-116). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:NR29337
|
2 |
The RO(G)-graded Serre spectral sequence /Kronholm, William C., January 2008 (has links)
Thesis (Ph. D.)--University of Oregon, 2008. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 71-72). Also available online in Scholars' Bank; and in ProQuest, free to University of Oregon users.
|
3 |
Some results on quantum projective planes /Mori, Izuru. January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (leaf [106]).
|
4 |
Bifibrational duality in non-abelian algebra and the theory of databasesWeighill, Thomas 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: In this thesis we develop a self-dual categorical approach to some topics in
non-abelian algebra, which is based on replacing the framework of a category
with that of a category equipped with a functor to it. We also make some first
steps towards a possible link between this theory and the theory of databases
in computer science. Both of these theories are based around the study of
Grothendieck bifibrations and their generalisations. The main results in this
thesis concern correspondences between certain structures on a category which
are relevant to the study of categories of non-abelian group-like structures, and
functors over that category. An investigation of these correspondences leads
to a system of dual axioms on a functor, which can be considered as a solution
to the proposal of Mac Lane in his 1950 paper "Duality for Groups" that
a self-dual setting for formulating and proving results for groups be found.
The part of the thesis concerned with the theory of databases is based on a
recent approach by Johnson and Rosebrugh to views of databases and the view
update problem. / AFRIKAANSE OPSOMMING: In hierdie tesis word ’n self-duale kategoriese benadering tot verskeie onderwerpe
in nie-abelse algebra ontwikkel, wat gebaseer is op die vervanging van
die raamwerk van ’n kategorie met dié van ’n kategorie saam met ’n funktor
tot die kategorie. Ons neem ook enkele eerste stappe in die rigting van ’n skakel
tussen hierdie teorie and die teorie van databasisse in rekenaarwetenskap.
Beide hierdie teorieë is gebaseer op die studie van Grothendieck bifibrasies
en hul veralgemenings. Die hoof resultate in hierdie tesis het betrekking tot
ooreenkomste tussen sekere strukture op ’n kategorie wat relevant tot die studie
van nie-abelse groep-agtige strukture is, en funktore oor daardie kategorie.
’n Verdere ondersoek van hierdie ooreemkomste lei tot ’n sisteem van duale
aksiomas op ’n funktor, wat beskou kan word as ’n oplossing tot die voorstel
van Mac Lane in sy 1950 artikel “Duality for Groups” dat ’n self-duale konteks
gevind word waarin resultate vir groepe geformuleer en bewys kan word. Die
deel van hierdie tesis wat met die teorie van databasisse te doen het is gebaseer
op ’n onlangse benadering deur Johnson en Rosebrugh tot aansigte van
databasisse en die opdatering van hierdie aansigte.
|
5 |
Grothendieck Group Decategorifications and Derived Abelian CategoriesMcBride, Aaron January 2015 (has links)
The Grothendieck group is an interesting invariant of an exact category. It induces a decategorication from the category of essentially small exact categories (whose morphisms are exact functors) to the category of abelian groups. Similarly, the triangulated Grothendieck group induces a decategorication from the category of essentially small triangulated categories (whose morphisms are triangulated functors) to the category of abelian groups. In the case of an essentially small abelian category, its Grothendieck group and the triangulated Grothendieck group of its bounded derived category are isomorphic as groups via a natural map. Because of this, homological algebra and derived functors become useful in surprising ways. This thesis is an expository work that provides an overview of the theory of Grothendieck groups with respect to these decategorications.
|
Page generated in 0.0967 seconds