Spelling suggestions: "subject:"2around Motion"" "subject:"4wsground Motion""
71 |
Engineering seismological studies and seismic design criteria for the Buller Region, South Island, New ZealandStafford, Peter James January 2006 (has links)
This thesis addresses two fundamental topics in Engineering Seismology; the application of Probabilistic Seismic Hazard Analysis (PSHA) methodology, and the estimation of measures of Strong Ground Motion. These two topics, while being related, are presented as separate sections. In the first section, state-of-the-art PSHA methodologies are applied to various sites in the Buller Region, South Island, New Zealand. These sites are deemed critical to the maintenance of economic stability in the region. A fault-source based seismicity model is developed for the region that is consistent with the governing tectonic loading, and seismic moment release of the region. In attempting to ensure this consistency the apparent anomaly between the rates of activity dictated by deformation throughout the Quaternary, and rates of activity dictated by observed seismicity is addressed. Individual fault source activity is determined following the application of a Bayesian Inference procedure in which observed earthquake events are attributed to causative faults in the study region. The activity of fault sources, in general, is assumed to be governed by bounded power law behaviour. An exception is made for the Alpine Fault which is modelled as a purely characteristic source. The calculation of rates of exceedance of various ground motion indices is made using a combination of Poissonian and time-dependent earthquake occurrence models. The various ground motion indices for which rates of exceedance are determined include peak ground acceleration, ordinates of 5% damped Spectral Acceleration, and Arias Intensity. The total hazard determined for each of these ground motion measures is decomposed using a four dimensional disaggregation procedure. From this disaggregation procedure, design earthquake scenarios are specified for the sites that are considered. The second part of the thesis is concerned with the estimation of ground motion measures that are more informative than the existing scalar measures that are available for use in New Zealand. Models are developed for the prediction of Fourier Amplitude Spectra (FAS) as well as Arias Intensity for use in the New Zealand environment. The FAS model can be used to generate ground motion time histories for use in structural and geotechnical analyses. Arias Intensity has been shown to be an important strong motion measure due to its positive correlation with damage in short period structures as well as its utility in predicting the onset of liquefaction and landslides. The models are based upon the analysis of a dataset of New Zealand Strong Motion records as well as supplementary near field records from major overseas events. While the two measures of ground motion intensity are strongly related, different methods have been adopted in order to develop the models. As part of the methodology used for the FAS model, Monte Carlo simulation coupled with a simple ray tracing procedure is employed to estimate source spectra from various New Zealand earthquakes and, consequently, a magnitude - corner-frequency relationship is obtained. In general, the parameters of the predictive equations are determined using the most state-of-the-art mixed effects regression procedures.
|
72 |
Comparative performance of ductile and damage protected bridge piers subjected to bi-directional earthquake attackMashiko, Naoto January 2006 (has links)
Incremental Dynamic Analysis (IDA) procedures are advanced and then applied to a quantitative risk assessment for bridge structures. This is achieved by combining IDA with site-dependent hazard-recurrence relations and damage outcomes. The IDA procedure is also developed as a way to select a critical earthquake motion record for a one-off destructive experiment. Three prototype bridge substructures are designed according to the loading and detailing requirements of New Zealand, Japan and Caltrans codes. From these designs 30 percent reduced scale specimens are constructed as part of an experimental investigation. The Pseudodynamic test is then to control on three specimens using the identified critical earthquake records. The results are presented in a probabilistic riskbased format. The differences in the seismic performance of the three different countries' design codes are examined. Each of these current seismic design codes strive for ductile behaviour of bridge substructures. Seismic response is expected to be resulting damage on structures, which may threaten post-earthquake serviceability. To overcome this major performance shortcoming, the seismic behaviour under bi-directional lateral loading is investigated for a bridge pier designed and constructed in accordance with Damage Avoidance principles. Due to the presence of steel armoured rocking interface at the base, it is demonstrated that damage can be avoided, but due to the lack of hysteresis it is necessary to add some supplemental damping. Experimental results of the armoured rocking pier under bi-directional loading are compared with a companion ductile design specimen.
|
73 |
Low Cycle Fatigue Effects In The Damage Caused By The Marmara Earthquake Of August 17, 1999Acar, Fikri 01 October 2004 (has links) (PDF)
This study mainly addresses the problem of estimating the prior earthquake damage on the response of reinforced concrete structures to future earthquakes. The motivation has arisen from the heavy damages or collapses that occurred in many reinforced concrete structures following two major earthquakes that recently occurred in the Marmara Region, Turkey.
The analysis tool employed for this purpose is the package named IDARC2D. Deterioration parameters of IDARC' / s hysteretic model have been calibrated using a search method. In the calibration process experimental data of a total of twenty-two beam and column specimens, tested under constant and variable amplitude displacement histories, has been used. Fine-tuning of deterioration parameters is essential for more realistic predictions about inelastic behavior and structural damage. In order to provide more realistic damage prediction, three ranges of parameters are proposed.
Some damage controlling structural parameters have been assessed via a large number of two-dimensional section analyses, inelastic time history and damage analyses of SDOF systems and seismic vulnerability analyses of reinforced concrete buildings.
Inelastic time history and damage analyses of numerous SDOF systems have been carried out to determine whether the loading history has an effect on damage and dissipated hysteretic energy. Then this emphasis is directed to the analyses of MDOF systems. In the analyses of the SDOF systems, various forms of constant and variable amplitude inelastic displacement reversals and synthetic ground motions composed of one of the four earthquake records preceded or followed by its modified records acted as a prior or successive earthquake, have been used. The analyses of two five-story R/C buildings have been caried out using synthetic accelerograms comprised of base input provided by the two recorded ground motions.
It is shown that both damage progression and cumulative hysteretic energy dissipated along a path seem to depend on the number and amplitude of cycles constituting the path. However, final damage and accumulated hysteretic energy dissipated along a loading path are independent of the ordering of the same number and amplitude cycles along the path. There is a nonlinear relationship between the earthquake excitation intensity and final damage attained in the end. Increase in the acceleration amplitude leads to exponential increase in damage. As the prior earthquake intensity increases the damage from the succeding main earthquake decreases. A definite ground motion acting as prior and successive earthquake causes substantially different amount of damage. Prior earthquake damage does not substantially affect the maximum drift response in future larger earthquakes. A MDOF frame type structure with aprior damage suffers less overall damage in an earthquake in comparison with the one without a prior damage.
|
74 |
Définition des mouvements sismiques "au rocher / Definition of "rock" motionLaurendeau, Aurore 16 July 2013 (has links)
L'objectif de cette thèse vise à améliorer la définition des vibrations (« mouvement sismique ») sur des sites « durs » (sédiments raides ou rochers) liés à des scénarios (séismes de magnitude entre 5 et 6.5, distances inférieures à 50 kilomètres) représentatifs du contexte métropolitain français. Afin de contraindre ces mouvements sismiques sur sites « durs », une base de données accélérométriques a été construite, à partir des enregistrements accélérométriques japonais K-NET et KiK-net qui ont l'avantage d'être publiques, nombreux et de grande qualité. Un modèle de prédiction des mouvements sismiques (spectre de réponse en accélération) a été conçu à partir de cette nouvelle base. La comparaison entre modèles théoriques et observations montre la dépendance des vibrations sur sites rocheux à la fois aux caractéristiques de vitesse du site (paramètre classique décrivant la vitesse des ondes S dans les 30 derniers mètres) et aux mécanismes d'atténuation hautes fréquences (un phénomène très peu étudié jusque-là). Ces résultats confirment une corrélation entre ces deux mécanismes (les sites rocheux les plus mous atténuent plus le mouvement sismique à hautes fréquences) et nous proposons un modèle de prédiction du mouvement sismique prenant en compte l'ensemble des propriétés du site (atténuation et vitesse). Les méthodes nouvelles de dimensionnement dynamiques non linéaires (à la fois géotechniques et structurelles) ne se satisfont pas des spectres de réponse mais requièrent des traces temporelles. Dans le but de générer de telles traces temporelles, la méthode stochastique non stationnaire développée antérieurement par Pousse et al. 2006 a été revisitée. Cette méthode semi-empirique nécessite de définir au préalable les distributions des indicateurs clés du mouvement sismique. Nous avons ainsi développé des modèles de prédiction empiriques pour la durée de phase forte, l'intensité d'Arias et la fréquence centrale, paramètre décrivant la variation du contenu fréquentiel au cours du temps. Les nouveaux développements de la méthode stochastique permettent de reproduire des traces temporelles sur une large bande de fréquences (0.1-50 Hz), de reproduire la non stationnarité en temps et en fréquence et la variabilité naturelle des vibrations sismiques. Cette méthode présente l'avantage d'être simple, rapide d'exécution et de considérer les bases théoriques de la sismologie (source de Brune, une enveloppe temporelle réaliste, non stationnarité et variabilité du mouvement sismique). Dans les études de génie parasismique, un nombre réduit de traces temporelles est sélectionné, et nous analysons dans une dernière partie l'impact de cette sélection sur la conservation de la variabilité naturelle des mouvements sismiques. / The aim of this thesis is to improve the definition of vibrations ("seismic motion") on "hard" sites (hard soils or rocks) related to scenarios (earthquakes of magnitude between 5 and 6.5, distances less than 50 km) representative of the French metropolitan context.In order to constrain the seismic motions on "hard" sites, an accelerometric database was built, from the K-NET and KiK-net Japanese recordings which have the benefit of being public, numerous and high quality. A ground motion prediction equation for the acceleration response spectra was developed from this new database. The comparison between theoretical models and observations shows the dependence of vibration on rock sites in both the velocity characteristics of the site (classical parameter describing the S-wave velocity in the last 30 meters) and the high frequency attenuation mechanisms (a phenomenon little studied up to now). These results confirm a correlation between these two mechanisms (the high frequency seismic motion is more attenuated in the case of softer rock sites) and we propose a ground motion prediction equation taking into account all the properties of the site (attenuation and velocity).New methods of nonlinear dynamic analysis (both geotechnical and structural) are not satisfied with the response spectra but require time histories. To generate such time histories, the non-stationary stochastic method previously developed by Pousse et al. (2006) has been revisited. This semi-empirical method requires first to define the distributions of key indicators of seismic motion. We have developed empirical models for predicting the duration, the Arias intensity and the central frequency, parameter describing the frequency content variation over time. New developments of the stochastic method allow to reproduce time histories over a wide frequency band (0.1-50 Hz), to reproduce the non-stationarity in time and frequency and to reproduce the natural variability of seismic vibrations. This method has the advantage of being simple, fast and taking into account basic concepts of seismology (Brune's source, a realistic envelope function, non-stationarity and variability of seismic motion). In earthquake engineering studies, a small number of time histories is selected, and we analyze in the last part the impact of this selection on the conservation of the ground motion natural variability.
|
75 |
Prochaine generation paneuropéennes équations de prédiction de mouvements de terrains pour les paramêtres de ingénierie / Next generation pan-european ground-motion prediction equations for engineering parametersSandikkaya, Mustafa Abdullah 11 April 2014 (has links)
Cette étude présente tout d'abord la récente banque de données fort mouvement pan-européen qui est mis à jour et la version étendue de bases de données paneuropéennes précédentes. Les métadonnées relatives est soigneusement compilé et réévalué. La base de données est conforme aux normes élevées pour être des ressources de la communauté paneuropéenne de génie parasismique. Ensuite, une étude empirique non linéaire place amplification modèle, fonction de la moyenne en fonction du temps de la plus haute 30m profil de vitesse des ondes de cisaillement et l'accélération maximale du sol sur le roc, est développé. L'objectif principal de tirer un tel modèle est de l'utiliser dans les équations de prédiction des mouvements du sol (GMPEs). Par ailleurs, l'évaluation des facteurs de site dans les codes de conception parasismique montre qu'il est également applicable dans les facteurs de sites informatiques. À cette fin, une autre méthodologie qui prend en compte les résultats de l'analyse de l'aléa sismique probabiliste et déterministe modèles de site est proposé. Cette étude génère GMPEs de réponse élastique ordonnées spectrales horizontale et verticale d'amortissement de 5%. Plutôt que d'équations directs pour le mouvement vertical, afin d'obtenir spectre du danger horizontale et verticale cohérente, compatible GMPE de rapport vertical à horizontal est préférable. Modèles de mise à l'échelle d'amortissement supplémentaires pour modifier les spectres horizontaux et verticaux d'autres ratios d'amortissement sont proposées. / This study firstly presents the recent pan-European strong-motion databank that is updated and extended version of previous pan-European databases. The pertaining metadata is carefully compiled and reappraised. The database meets high standards for being resource of pan-European earthquake engineering community. Then, an empirical nonlinear site amplification model, function of time-based average of uppermost 30m shear wave velocity profile and peak ground acceleration on rock, is developed. The primary aim of deriving such a model is to use it in ground motion prediction equations (GMPEs). Besides, the evaluation of site factors in the seismic design codes shows that it is also applicable in computing site factors. To this end, an alternative methodology that considers the results of probabilistic seismic hazard analysis and deterministic site models is proposed. Finally, this study generates GMPEs for horizontal and vertical elastic response spectral ordinates for different damping values between 1% to 50%. Rather than direct equations for vertical motion, to obtain consistent horizontal and vertical hazard spectrum, compatible vertical-to-horizontal ratio GMPE is preferred. Additional damping scaling models to modify horizontal and vertical spectra at other damping ratios are proposed
|
76 |
Évaluation et réduction des conséquences des mouvements de terrains sur le bâti : approches expérimentale et numérique / Evaluation and reduction of ground movements consequences on building : experimental and numerical approachesHor, Boramy 24 January 2012 (has links)
L’instabilité des cavités souterraines (mines, carrières, tunnels,…) peut induire les mouvements de terrains d’amplitude suffisante pour endommager les bâtiments et les infrastructures en surface. Les méthodes traditionnelles, utilisées dans les pratiques d’ingénieur pour prévoir les déformations dans les structures, sont basées sur les caractéristiques des mouvements de terrain en condition de terrain vierge sans prendre en compte l’effet de la présence des structures en surface. L’objectif de cette thèse est de prédire les déformations des ouvrages en tenant compte de l’influence de l’interaction sol-structure, d’une part ; et d’évaluer la performance d’une solution de protection (tranchée périphérique), d’autre part. Cela a été achevé par la réalisation d’études paramétriques utilisant deux approches complémentaires : une approche expérimentale à l’aide d’un modèle réduit physique 3D sous gravité normale et une modélisation numérique 3D par la méthode des éléments finis. En particulier l’effet d’un certain nombre de paramètres géométriques et mécaniques a pu être investigué dans l’étude de l’interaction sol-structure : la position de la structure par rapport à la cuvette d’affaissement, le poids de la structure et la raideur relative entre le sol et la structure. Concernant l’étude de l’efficacité de tranchées périphériques, l’effet de la position de la structure, de la position de la tranchée vis-à-vis de la structure et de la rigidité de la tranchée a été analysé. Les résultats obtenus ont abouti à une meilleure compréhension du problème d’interaction sol-structure et ont montré l’importance de cet effet qui doit être pris en compte dans l’évaluation de la vulnérabilité du bâti. Le transfert des mouvements du sol à la structure est faible (moins de 2,5%), dans le cas modélisé : structure rigide et interface glissante. Les différents résultats ont permis par ailleurs de mettre en évidence l’efficacité de la tranchée périphérique pour réduire les sollicitations affectant les structures. La tranchée doit être remplie avec un matériau très déformable et surtout placée à une distance de l’ordre d’un mètre de la structure. / The instability of underground cavities due to mining or tunneling activities can induce surface ground movements which damage overlying buildings and infrastructures. The conventional design methods, used in engineering practices to assess the structure’s deformations, are based on greendfield ground movements without taking into account the effect of the surface structure. The objective of this thesis is to predict the building deformations by taking the in-fluence of the soil-structure interaction into consideration, and to evaluate the performance of a mitigation technique (peripheral trench). This has been achieved by performing parametric studies using both the experimental approach by means of a 3D small-scale physical model under earth gravity condition and the 3D finite element numerical modeling. In particular the effect of building position, building weight, and relative stiffness of building and underlying soil has been investigated in the soil-structure interaction study. Concerning the trench effectiveness analysis, the effect of building position, trench position relatively to the building, and the trench stiffness has been investigated. The results of these investigations have led to a better understanding of the soil-structure interaction problem and have pointed out the importance of this effect which should be taken into account for building damage assessment. The transfer of ground movements to the buildings is low (less than 2.5%) for the modeled case: stiff structure and sliding contact. In addition, the results have proved the effectiveness of the peripheral trench to reduce the ground movements affecting the buildings. The trench should be filled with a very deformable material and located at a distance of around one meter from the building.
|
77 |
Engineering Seismic Source Models And Strong Ground MotionRaghu Kanth, S T G 04 1900 (has links) (PDF)
No description available.
|
78 |
Assessment Of Seismic Hazard With Local Site Effects : Deterministic And Probabilistic ApproachesVipin, K S 12 1900 (has links)
Many researchers have pointed out that the accumulation of strain energy in the Penninsular Indian Shield region may lead to earthquakes of significant magnitude(Srinivasan and Sreenivas, 1977; Valdiya, 1998; Purnachandra Rao, 1999; Seeber et al., 1999; Ramalingeswara Rao, 2000; Gangrade and Arora, 2000). However very few studies have been carried out to quantify the seismic hazard of the entire Pennisular Indian region. In the present study the seismic hazard evaluation of South Indian region (8.0° N - 20° N; 72° E - 88° E) was done using the deterministic and probabilistic seismic hazard approaches. Effects of two of the important geotechnical aspects of seismic hazard, site response and liquefaction, have also been evaluated and the results are presented in this work. The peak ground acceleration (PGA) at ground surface level was evaluated by considering the local site effects. The liquefaction potential index (LPI) and factor of safety against liquefaction wee evaluated based on performance based liquefaction potential evaluation method.
The first step in the seismic hazard analysis is to compile the earthquake catalogue. Since a comprehensive catalogue was not available for the region, it was complied by collecting data from different national (Guaribidanur Array, Indian Meterorological Department (IMD), National Geophysical Research Institute (NGRI) Hyderabad and Indira Gandhi Centre for Atomic Research (IGCAR) Kalpakkam etc.) and international agencies (Incorporated Research Institutions for Seismology (IRIS), International Seismological Centre (ISC), United States Geological Survey (USGS) etc.). The collected data was in different magnitude scales and hence they were converted to a single magnitude scale. The magnitude scale which is chosen in this study is the moment magnitude scale, since it the most widely used and the most advanced scientific magnitude scale. The declustering of earthquake catalogue was due to remove the related events and the completeness of the catalogue was analysed using the method suggested by Stepp (1972). Based on the complete part of the catalogue the seismicity parameters were evaluated for the study area.
Another important step in the seismic hazard analysis is the identification of vulnerable seismic sources. The different types of seismic sources considered are (i) linear sources (ii) point sources (ii) areal sources. The linear seismic sources were identified based on the seismotectonic atlas published by geological survey of India (SEISAT, 2000). The required pages of SEISAT (2000) were scanned and georeferenced. The declustered earthquake data was superimposed on this and the sources which were associated with earthquake magnitude of 4 and above were selected for further analysis.
The point sources were selected using a method similar to the one adopted by Costa et.al. (1993) and Panza et al. (1999) and the areal sources were identified based on the method proposed by Frankel et al. (1995). In order to map the attenuation properties of the region more precisely, three attenuation relations, viz. Toto et al. (1997), Atkinson and Boore (2006) and Raghu Kanth and Iyengar (2007) were used in this study.
The two types of uncertainties encountered in seismic hazard analysis are aleatory and epistemic. The uncertainty of the data is the cause of aleatory variability and it accounts for the randomness associated with the results given by a particular model. The incomplete knowledge in the predictive models causes the epistemic uncertainty (modeling uncertainty). The aleatory variability of the attenuation relations are taken into account in the probabilistic seismic hazard analysis by considering the standard deviation of the model error. The epistemic uncertainty is considered by multiple models for the evaluation of seismic hazard and combining them using a logic tree.
Two different methodologies were used in the evaluation of seismic hazard, based on deterministic and probabilistic analysis. For the evaluation of peak horizontal acceleration (PHA) and spectral acceleration (Sa) values, a new set of programs were developed in MATLAB and the entire analysis was done using these programs. In the deterministic seismic hazard analysis (DSHA) two types of seismic sources, viz. linear and point sources, were considered and three attenuation relations were used. The study area was divided into small grids of size 0.1° x 0.1° (about 12000 grid points) and the PHA and Sa values were evaluated for the mean and 84th percentile values at the centre of each of the grid points. A logic tree approach, using two types of sources and three attenuation relations, was adopted for the evaluation of PHA and Sa values. Logic tree permits the use of alternative models in the hazard evaluation and appropriate weightages can be assigned to each model. By evaluating the 84th percentile values, the uncertainty in spectral acceleration values can also be considered (Krinitzky, 2002). The spatial variations of PHA and Sa values for entire South India are presented in this work.
The DSHA method will not consider the uncertainties involved in the earthquake recurrence process, hypocentral distance and the attenuation properties. Hence the seismic hazard analysis was done based on the probabilistic seismic hazard analysis (PSHA), and the evaluation of PHA and Sa values were done by considering the uncertainties involved in the earthquake occurrence process. The uncertainties in earthquake recurrence rate, hypocentral location and attenuation characteristic were considered in this study. For evaluating the seismicity parameters and the maximum expected earthquake magnitude (mmax) the study area was divided into different source zones. The division of study area was done based on the spatial variation of the seismicity parameters ‘a’ and ‘b’ and the mmax values were evaluated for each of these zones and these values were used in the analysis. Logic tree approach was adopted in the analysis and this permits the use of multiple models. Twelve different models (2 sources x 2 zones x 3 attenuation) were used in the analysis and based on the weightage for each of them; the final PHA and Sa values at bed rock level were evaluated. These values were evaluated for a grid size of 0.1° x 0.1° and the spatial variation of these values for return periods of 475 and 2500 years (10% and 2% probability of exceedance in 50 years) are presented in this work.
Both the deterministic and probabilistic analyses highlighted that the seismic hazard is high at Koyna region. The PHA values obtained for Koyna, Bangalore and Ongole regions are higher than the values given by BIS-1893(2002). The values obtained for south western part of the study area, especially for parts of kerala are showing the PHA values less than what is provided in BIS-1893(2002). The 84th percentile values given DSHA can be taken as the upper bound PHA and Sa values for South India.
The main geotechnical aspects of earthquake hazard are site response and seismic soil liquefaction. When the seismic waves travel from the bed rock through the overlying soil to the ground surface the PHA and Sa values will get changed. This amplification or de-amplification of the seismic waves depends on the type of the overlying soil. The assessment of site class can be done based on different site classification schemes. In the present work, the surface level peak ground acceleration (PGA) values were evaluated based on four different site classes suggested by NEHRP (BSSC, 2003) and the PGA values were developed for all the four site classes based on non-linear site amplification technique. Based on the geotechnical site investigation data, the site class can be determined and then the appropriate PGA and Sa values can be taken from the respective PGA maps.
Response spectra were developed for the entire study area and the results obtained for three major cities are discussed here. Different methods are suggested by various codes to
Smooth the response spectra. The smoothed design response spectra were developed for these cities based on the smoothing techniques given by NEHRP (BSSC, 2003), IS code (BIS-1893,2002) and Eurocode-8 (2003). A Comparison of the results obtained from these studies is also presented in this work.
If the site class at any location in the study area is known, then the peak ground acceleration (PGA) values can be obtained from the respective map. This provides a simplified methodology for evaluating the PGA values for a vast area like South India. Since the surface level PGA values were evaluated for different site classes, the effects of surface topography and basin effects were not taken into account. The analysis of response spectra clearly indicates the variation of peak spectral acceleration values for different site classes and the variation of period of oscillation corresponding to maximum Sa values. The comparison of the smoothed design response spectra obtained using different codal provisions suggest the use of NEHRP(BSSC, 2003) provisions.
The conventional liquefaction analysis method takes into account only one earthquake magnitude and ground acceleration values. In order to overcome this shortfall, a performance based probabilistic approach (Kramer and Mayfield, 2007) was adopted for the liquefaction potential evaluation in the present work. Based on this method, the factor of safety against liquefaction and the SPT values required to prevent liquefaction for return periods of 475 and 2500 years were evaluated for Bangalore city. This analysis was done based on the SPT data obtained from 450 boreholes across Bangalore. A new method to evaluate the liquefaction return period based on CPT values is proposed in this work. To validate the new method, an analysis was done for Bangalore by converting the SPT values to CPT values and then the results obtained were compared with the results obtained using SPT values. The factor of safety against liquefaction at different depths were integrated using liquefaction potential index (LPI) method for Bangalore. This was done by calculating the factor of safety values at different depths based on a performance based method and then the LPI values were evaluated. The entire liquefaction potential analysis and the evaluation of LPI values were done using a set of newly developed programs in MATLAB.
Based on the above approaches it is possible to evaluate the SPT and CPT values required to prevent liquefaction for any given return period. An analysis was done to evaluate the SPT and CPT values required to prevent liquefaction for entire South India for return periods of 475 and 2500 years. The spatial variations of these values are presented in this work.
The liquefaction potential analysis of Bangalore clearly indicates that majority of the area is safe against liquefaction. The liquefaction potential map developed for South India, based on both SPT and CPT values, will help hazard mitigation authorities to identify the liquefaction vulnerable area. This in turn will help in reducing the liquefaction hazard.
|
79 |
Návrh systému Auto Taxi pro letoun / Auto Taxi System Design for AircraftKardoš, Juraj January 2015 (has links)
Nedávné studie předpovídají nárůst pasažérů využívajících leteckou dopravu. Tento trend bude vyžadovat zavedení nových leteckých linek, důsledkem čeho bude zhuštěn letový provoz s dopadem hlavně na nápor letišť v metropolitních oblastech. Automatizovaně řízení pojíždení letounu umožní menší rozestupy mezi jednotlivými linkami a zvýšení příletové a odletové kapacity letišť. Tato práce se zabývá návrhem modelu pohybu dopravního letounu po zemi s ohledem na různé provozní podmínky jako např.: stav povrchu vzletové a přistávací dráhy za různého počasí a lišící se provozní parametry letounu (tlak v pneumatikách, zatížení podvozků a pod.). Validace modelu byla založena na sledování poloměru zatáčky pro různe uhly natočení přední podvozkové nohy. Výsledky simulace byly validovany vzhledem k analytickému modelu Ackermanovy geometrie a na specifikační dokument od Boeingu určený pro plánovaní pohybu letounu na letišti. Výsledky prokázaly přesnost modelu a potvrdily jeho možné nasazení pro simulace v reálnem čase.
|
Page generated in 0.0547 seconds