• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Site amplification model for use in ground motion prediction equations

Navidi, Sara 12 February 2013 (has links)
The characteristics of earthquake shaking are affected by the local site conditions. The effects of the local soil conditions are often quantified via an amplification factor (AF), which is defined as the ratio of the ground motion at the soil surface to the ground motion at a rock site at the same location. Amplification factors can be defined for any ground motion parameter, but most commonly are assessed for acceleration response spectral values at different oscillator periods. Site amplification can be evaluated for a site by conducting seismic site response analysis, which models the wave propagation from the base rock through the site-specific soil layers to the ground surface. An alternative to site-specific seismic response analysis is site amplification models. Site amplification models are empirical equations that predict the site amplification based on general characteristics of the site. Most of the site amplification models that already used in ground motion prediction equations characterize a site with two parameters: the average shear wave velocity in the top 30 m (VS30) and the depth to bedrock. However, additional site parameters influence site amplification and should be included in site amplification models. To identify the site parameters that help explain the variation in site amplification, ninety nine manually generated velocity profiles are analyzed using seismic site response analysis. The generated profiles have the same VS30 and depth to bedrock but a different velocity structure in the top 30 m. Different site parameters are investigated to explain the variability in the computed amplification. The parameter Vratio, which is the ratio of the average shear wave velocity between 20 m and 30 m to the average shear wave velocity in the top 10 m, is identified as the site parameter that most affects the computed amplification for sites with the same VS30 and depth to bedrock. To generalize the findings from the analyses in which only the top 30 m of the velocity profile are varied, a suite of fully randomized velocity profiles are generated and site response analysis is used to compute the amplification for each site for a range of input motion intensities. The results of the site response analyses conducted on these four hundred fully randomized velocity profiles confirm the influence of Vratio on site amplification. The computed amplification factors are used to develop an empirical site amplification model that incorporates the effect of Vratio, as well as VS30 and the depth to bedrock. The empirical site amplification model includes the effects of soil nonlinearity, such that the predicted amplification is a function of the intensity of shaking. The developed model can be incorporated into the development of future ground motion prediction equations. / text
2

New Ground Motion Prediction Equations for Saudi Arabia and their Application to Probabilistic Seismic Hazard Analysis / サウジアラビアにおける地震動予測式の構築と確率論的地震動予測への適用

Kiuchi, Ryota 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第22259号 / 理博第4573号 / 新制||理||1657(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)教授 James Mori, 教授 久家 慶子, 教授 岩田 知孝 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
3

Probabilistic Seismic Hazard Assessment Of Ilgaz - Abant Segments Of North Anatolian Fault Using Improved Seismic Source Models

Levendoglu, Mert 01 February 2013 (has links) (PDF)
Bolu-Ilgaz region was damaged by several large earthquakes in the last century and the structural damage was substantial especially after the 1944 and 1999 earthquakes. The objective of this study is to build the seismic source characterization model for the rupture zone of 1944 Bolu-Gerede earthquake and perform probabilistic seismic hazard assessment (PSHA) in the region. One of the major improvements over the previous PSHA practices accomplished in this study is the development of advanced seismic source models in terms of source geometry and reoccurrence relations. Geometry of the linear fault segments are determined and incorporated with the help of available fault maps. Composite magnitude distribution model is used to properly represent the characteristic behavior of NAF without an additional background zone. Fault segments, rupture sources, rupture scenarios and fault rupture models are determined using the WG-2003 terminology. The Turkey-Adjusted NGAW1 (G&uuml / lerce et al., 2013) prediction models are employed for the first time on NAF system. The results of the study is presented in terms of hazard curves, deaggregation of the hazard and uniform hazard spectrum for four main locations in the region to provide basis for evaluation of the seismic design of special structures in the area. Hazard maps of the region for rock site conditions and for the proposed site characterization model are provided to allow the user perform site-specific hazard assessment for local site conditions and develop site-specific design spectrum. The results of the study will be useful to manage the future seismic hazard in the region.
4

Probabilistic Seismic Hazard Assessment Of Eastern Marmara And Evaluation Of Turkish Earthquake Code Requirements

Ocak, Recai Soner 01 November 2011 (has links) (PDF)
The primary objective of this study is to evaluate the seismic hazard in the Eastern Marmara Region using improved seismic source models and enhanced ground motion prediction models by probabilistic approach. Geometry of the fault zones (length, width, dip angle, segmentation points etc.) is determined by the help of available fault maps and traced source lines on the satellite images. State of the art rupture model proposed by USGS Working Group in 2002 is applied to the source system. Composite reoccurrence model is used for all seismic sources in the region to represent the characteristic behavior of North Anatolian Fault. New and improved global ground motion models (NGA models) are used to model the ground motion variability for this study. Previous studies, in general, used regional models or older ground motion prediction models which were updated by their developers during the NGA project. New NGA models were improved in terms of additional prediction parameters (such as depth of the source, basin effects, site dependent standard deviations, etc.), statistical approach, and very well constrained global database. The use of NGA models reduced the epistemic uncertainty in the total hazard incorporated by regional or older models using smaller datasets. The results of the study is presented in terms of hazard curves, deaggregation of the hazard and uniform hazard spectrum for six main locations in the region (Adapazari, Duzce, Golcuk, Izmit, Iznik, and Sapanca City Centers) to provide basis for seismic design of special structures in the area. Hazard maps of the region for rock site conditions at the accepted levels of risk by Turkish Earthquake Code (TEC-2007) are provided to allow the user perform site-specific hazard assessment for local site conditions and develop site-specific design spectrum. Comparison of TEC-2007 design spectrum with the uniform hazard spectrum developed for selected locations is also presented for future reference.
5

évaluation du risque sismique par approches neuronales / a framework for seismic risk assessment based on artificial neural networks

Wang, Zhiyi 27 November 2018 (has links)
L'étude probabiliste de sûreté (EPS) parasismique est l'une des méthodologies les plus utiliséespour évaluer et assurer la performance des infrastructures critiques, telles que les centrales nucléaires,sous excitations sismiques. La thèse discute sur les aspects suivants: (i) Construction de méta-modèlesavec les réseaux de neurones pour construire les relations entre les intensités sismiques et les paramètresde demande des structures, afin d'accélérer l'analyse de fragilité. L'incertitude liée à la substitution desmodèles des éléments finis par les réseaux de neurones est étudiée. (ii) Proposition d'une méthodologiebayésienne avec réseaux de neurones adaptatifs, afin de prendre en compte les différentes sourcesd'information, y compris les résultats des simulations numériques, les valeurs de référence fournies dansla littérature et les évaluations post-sismiques, dans le calcul de courbes de fragilité. (iii) Calcul des loisd'atténuation avec les réseaux de neurones. Les incertitudes épistémiques des paramètres d'entrée de loisd'atténuation, tels que la magnitude et la vitesse moyenne des ondes de cisaillement de trente mètres, sontprises en compte dans la méthodologie développée. (iv) Calcul du taux de défaillance annuel en combinantles résultats des analyses de fragilité et de l'aléa sismique. Les courbes de fragilité sont déterminées parle réseau de neurones adaptatif, tandis que les courbes d'aléa sont obtenues à partir des lois d'atténuationconstruites avec les réseaux de neurones. Les méthodologies proposées sont appliquées à plusieurs casindustriels, tels que le benchmark KARISMA et le modèle SMART. / Seismic probabilistic risk assessment (SPRA) is one of the most widely used methodologiesto assess and to ensure the performance of critical infrastructures, such as nuclear power plants (NPPs),faced with earthquake events. SPRA adopts a probabilistic approach to estimate the frequency ofoccurrence of severe consequences of NPPs under seismic conditions. The thesis provides discussionson the following aspects: (i) Construction of meta-models with ANNs to build the relations betweenseismic IMs and engineering demand parameters of the structures, for the purpose of accelerating thefragility analysis. The uncertainty related to the substitution of FEMs models by ANNs is investigated.(ii) Proposal of a Bayesian-based framework with adaptive ANNs, to take into account different sourcesof information, including numerical simulation results, reference values provided in the literature anddamage data obtained from post-earthquake observations, in the fragility analysis. (iii) Computation ofGMPEs with ANNs. The epistemic uncertainties of the GMPE input parameters, such as the magnitudeand the averaged thirty-meter shear wave velocity, are taken into account in the developed methodology.(iv) Calculation of the annual failure rate by combining results from the fragility and hazard analyses.The fragility curves are determined by the adaptive ANN, whereas the hazard curves are obtained fromthe GMPEs calibrated with ANNs. The proposed methodologies are applied to various industrial casestudies, such as the KARISMA benchmark and the SMART model.
6

Prochaine generation paneuropéennes équations de prédiction de mouvements de terrains pour les paramêtres de ingénierie / Next generation pan-european ground-motion prediction equations for engineering parameters

Sandikkaya, Mustafa Abdullah 11 April 2014 (has links)
Cette étude présente tout d'abord la récente banque de données fort mouvement pan-européen qui est mis à jour et la version étendue de bases de données paneuropéennes précédentes. Les métadonnées relatives est soigneusement compilé et réévalué. La base de données est conforme aux normes élevées pour être des ressources de la communauté paneuropéenne de génie parasismique. Ensuite, une étude empirique non linéaire place amplification modèle, fonction de la moyenne en fonction du temps de la plus haute 30m profil de vitesse des ondes de cisaillement et l'accélération maximale du sol sur le roc, est développé. L'objectif principal de tirer un tel modèle est de l'utiliser dans les équations de prédiction des mouvements du sol (GMPEs). Par ailleurs, l'évaluation des facteurs de site dans les codes de conception parasismique montre qu'il est également applicable dans les facteurs de sites informatiques. À cette fin, une autre méthodologie qui prend en compte les résultats de l'analyse de l'aléa sismique probabiliste et déterministe modèles de site est proposé. Cette étude génère GMPEs de réponse élastique ordonnées spectrales horizontale et verticale d'amortissement de 5%. Plutôt que d'équations directs pour le mouvement vertical, afin d'obtenir spectre du danger horizontale et verticale cohérente, compatible GMPE de rapport vertical à horizontal est préférable. Modèles de mise à l'échelle d'amortissement supplémentaires pour modifier les spectres horizontaux et verticaux d'autres ratios d'amortissement sont proposées. / This study firstly presents the recent pan-European strong-motion databank that is updated and extended version of previous pan-European databases. The pertaining metadata is carefully compiled and reappraised. The database meets high standards for being resource of pan-European earthquake engineering community. Then, an empirical nonlinear site amplification model, function of time-based average of uppermost 30m shear wave velocity profile and peak ground acceleration on rock, is developed. The primary aim of deriving such a model is to use it in ground motion prediction equations (GMPEs). Besides, the evaluation of site factors in the seismic design codes shows that it is also applicable in computing site factors. To this end, an alternative methodology that considers the results of probabilistic seismic hazard analysis and deterministic site models is proposed. Finally, this study generates GMPEs for horizontal and vertical elastic response spectral ordinates for different damping values between 1% to 50%. Rather than direct equations for vertical motion, to obtain consistent horizontal and vertical hazard spectrum, compatible vertical-to-horizontal ratio GMPE is preferred. Additional damping scaling models to modify horizontal and vertical spectra at other damping ratios are proposed
7

Assessment Of Seismic Hazard With Local Site Effects : Deterministic And Probabilistic Approaches

Vipin, K S 12 1900 (has links)
Many researchers have pointed out that the accumulation of strain energy in the Penninsular Indian Shield region may lead to earthquakes of significant magnitude(Srinivasan and Sreenivas, 1977; Valdiya, 1998; Purnachandra Rao, 1999; Seeber et al., 1999; Ramalingeswara Rao, 2000; Gangrade and Arora, 2000). However very few studies have been carried out to quantify the seismic hazard of the entire Pennisular Indian region. In the present study the seismic hazard evaluation of South Indian region (8.0° N - 20° N; 72° E - 88° E) was done using the deterministic and probabilistic seismic hazard approaches. Effects of two of the important geotechnical aspects of seismic hazard, site response and liquefaction, have also been evaluated and the results are presented in this work. The peak ground acceleration (PGA) at ground surface level was evaluated by considering the local site effects. The liquefaction potential index (LPI) and factor of safety against liquefaction wee evaluated based on performance based liquefaction potential evaluation method. The first step in the seismic hazard analysis is to compile the earthquake catalogue. Since a comprehensive catalogue was not available for the region, it was complied by collecting data from different national (Guaribidanur Array, Indian Meterorological Department (IMD), National Geophysical Research Institute (NGRI) Hyderabad and Indira Gandhi Centre for Atomic Research (IGCAR) Kalpakkam etc.) and international agencies (Incorporated Research Institutions for Seismology (IRIS), International Seismological Centre (ISC), United States Geological Survey (USGS) etc.). The collected data was in different magnitude scales and hence they were converted to a single magnitude scale. The magnitude scale which is chosen in this study is the moment magnitude scale, since it the most widely used and the most advanced scientific magnitude scale. The declustering of earthquake catalogue was due to remove the related events and the completeness of the catalogue was analysed using the method suggested by Stepp (1972). Based on the complete part of the catalogue the seismicity parameters were evaluated for the study area. Another important step in the seismic hazard analysis is the identification of vulnerable seismic sources. The different types of seismic sources considered are (i) linear sources (ii) point sources (ii) areal sources. The linear seismic sources were identified based on the seismotectonic atlas published by geological survey of India (SEISAT, 2000). The required pages of SEISAT (2000) were scanned and georeferenced. The declustered earthquake data was superimposed on this and the sources which were associated with earthquake magnitude of 4 and above were selected for further analysis. The point sources were selected using a method similar to the one adopted by Costa et.al. (1993) and Panza et al. (1999) and the areal sources were identified based on the method proposed by Frankel et al. (1995). In order to map the attenuation properties of the region more precisely, three attenuation relations, viz. Toto et al. (1997), Atkinson and Boore (2006) and Raghu Kanth and Iyengar (2007) were used in this study. The two types of uncertainties encountered in seismic hazard analysis are aleatory and epistemic. The uncertainty of the data is the cause of aleatory variability and it accounts for the randomness associated with the results given by a particular model. The incomplete knowledge in the predictive models causes the epistemic uncertainty (modeling uncertainty). The aleatory variability of the attenuation relations are taken into account in the probabilistic seismic hazard analysis by considering the standard deviation of the model error. The epistemic uncertainty is considered by multiple models for the evaluation of seismic hazard and combining them using a logic tree. Two different methodologies were used in the evaluation of seismic hazard, based on deterministic and probabilistic analysis. For the evaluation of peak horizontal acceleration (PHA) and spectral acceleration (Sa) values, a new set of programs were developed in MATLAB and the entire analysis was done using these programs. In the deterministic seismic hazard analysis (DSHA) two types of seismic sources, viz. linear and point sources, were considered and three attenuation relations were used. The study area was divided into small grids of size 0.1° x 0.1° (about 12000 grid points) and the PHA and Sa values were evaluated for the mean and 84th percentile values at the centre of each of the grid points. A logic tree approach, using two types of sources and three attenuation relations, was adopted for the evaluation of PHA and Sa values. Logic tree permits the use of alternative models in the hazard evaluation and appropriate weightages can be assigned to each model. By evaluating the 84th percentile values, the uncertainty in spectral acceleration values can also be considered (Krinitzky, 2002). The spatial variations of PHA and Sa values for entire South India are presented in this work. The DSHA method will not consider the uncertainties involved in the earthquake recurrence process, hypocentral distance and the attenuation properties. Hence the seismic hazard analysis was done based on the probabilistic seismic hazard analysis (PSHA), and the evaluation of PHA and Sa values were done by considering the uncertainties involved in the earthquake occurrence process. The uncertainties in earthquake recurrence rate, hypocentral location and attenuation characteristic were considered in this study. For evaluating the seismicity parameters and the maximum expected earthquake magnitude (mmax) the study area was divided into different source zones. The division of study area was done based on the spatial variation of the seismicity parameters ‘a’ and ‘b’ and the mmax values were evaluated for each of these zones and these values were used in the analysis. Logic tree approach was adopted in the analysis and this permits the use of multiple models. Twelve different models (2 sources x 2 zones x 3 attenuation) were used in the analysis and based on the weightage for each of them; the final PHA and Sa values at bed rock level were evaluated. These values were evaluated for a grid size of 0.1° x 0.1° and the spatial variation of these values for return periods of 475 and 2500 years (10% and 2% probability of exceedance in 50 years) are presented in this work. Both the deterministic and probabilistic analyses highlighted that the seismic hazard is high at Koyna region. The PHA values obtained for Koyna, Bangalore and Ongole regions are higher than the values given by BIS-1893(2002). The values obtained for south western part of the study area, especially for parts of kerala are showing the PHA values less than what is provided in BIS-1893(2002). The 84th percentile values given DSHA can be taken as the upper bound PHA and Sa values for South India. The main geotechnical aspects of earthquake hazard are site response and seismic soil liquefaction. When the seismic waves travel from the bed rock through the overlying soil to the ground surface the PHA and Sa values will get changed. This amplification or de-amplification of the seismic waves depends on the type of the overlying soil. The assessment of site class can be done based on different site classification schemes. In the present work, the surface level peak ground acceleration (PGA) values were evaluated based on four different site classes suggested by NEHRP (BSSC, 2003) and the PGA values were developed for all the four site classes based on non-linear site amplification technique. Based on the geotechnical site investigation data, the site class can be determined and then the appropriate PGA and Sa values can be taken from the respective PGA maps. Response spectra were developed for the entire study area and the results obtained for three major cities are discussed here. Different methods are suggested by various codes to Smooth the response spectra. The smoothed design response spectra were developed for these cities based on the smoothing techniques given by NEHRP (BSSC, 2003), IS code (BIS-1893,2002) and Eurocode-8 (2003). A Comparison of the results obtained from these studies is also presented in this work. If the site class at any location in the study area is known, then the peak ground acceleration (PGA) values can be obtained from the respective map. This provides a simplified methodology for evaluating the PGA values for a vast area like South India. Since the surface level PGA values were evaluated for different site classes, the effects of surface topography and basin effects were not taken into account. The analysis of response spectra clearly indicates the variation of peak spectral acceleration values for different site classes and the variation of period of oscillation corresponding to maximum Sa values. The comparison of the smoothed design response spectra obtained using different codal provisions suggest the use of NEHRP(BSSC, 2003) provisions. The conventional liquefaction analysis method takes into account only one earthquake magnitude and ground acceleration values. In order to overcome this shortfall, a performance based probabilistic approach (Kramer and Mayfield, 2007) was adopted for the liquefaction potential evaluation in the present work. Based on this method, the factor of safety against liquefaction and the SPT values required to prevent liquefaction for return periods of 475 and 2500 years were evaluated for Bangalore city. This analysis was done based on the SPT data obtained from 450 boreholes across Bangalore. A new method to evaluate the liquefaction return period based on CPT values is proposed in this work. To validate the new method, an analysis was done for Bangalore by converting the SPT values to CPT values and then the results obtained were compared with the results obtained using SPT values. The factor of safety against liquefaction at different depths were integrated using liquefaction potential index (LPI) method for Bangalore. This was done by calculating the factor of safety values at different depths based on a performance based method and then the LPI values were evaluated. The entire liquefaction potential analysis and the evaluation of LPI values were done using a set of newly developed programs in MATLAB. Based on the above approaches it is possible to evaluate the SPT and CPT values required to prevent liquefaction for any given return period. An analysis was done to evaluate the SPT and CPT values required to prevent liquefaction for entire South India for return periods of 475 and 2500 years. The spatial variations of these values are presented in this work. The liquefaction potential analysis of Bangalore clearly indicates that majority of the area is safe against liquefaction. The liquefaction potential map developed for South India, based on both SPT and CPT values, will help hazard mitigation authorities to identify the liquefaction vulnerable area. This in turn will help in reducing the liquefaction hazard.

Page generated in 0.1321 seconds