Spelling suggestions: "subject:"2around state solution"" "subject:"4wsground state solution""
1 |
Um estudo sobre a equação de Hénon / A sudy on the Héenon equationQuispe, Maribel Rosa Bravo 25 February 2013 (has links)
Este trabalho apresenta um estudo quantitativo e qualitativo de soluções positivas para o problema de Dirichlet para a equação de Hénon (P) { - \'DELTA\'u = \'Ix! POT. \' alpha\'\' \'IuI POT. p-2\' em B, u = sobre \\partial B, onde B é a bola unitária aberta de \'R POT. N\' centrada em zero e \'alpha\' > 0. É mostrado que para p \'> OU =\' \'2 AST\' \'IND. \'alpha\'\' = { \'SUP. 2(N + \'alpha)\' \' INF. N - 2\' ; N > 2, \"INFINITO\'; N = 1,2 \'2 AST\' = { \'SUP. 2N\' \'INF. N - 2\' ; N > 2, \'INFINITO\'; N = 1,2, o problema não tem solução não trivial. Em contrapartida, para 1 < p < \'2 AST\'.\' \'IND. \'alpha\'\' com p \'DIFERENTE DE\' 2, a existência de uma solução positiva radial é garantida. Além disso, é provado a unicidade de solução positiva no caso em que 1 < p < 2. Também são apresentados resultados sobre a existência de soluções ground state quando 2 < p < \'2 AST\'. Nesse intervalo, é mostrado que qualquer solução ground state exibe a simetria Schwarz folheada e, no caso em que \'alpha\' é suficientemente grande, é provado que qualquer solução ground state não é radialmente simétrica. Por fim, é apresentado um resultado sobre a existência de múltiplas soluções positivas / This work presents a quantitative and qualitative study of positive solutions for the Dirichlet problem for the Hénon equation (P) (P) { - \'DELTA\'u = \'Ix! POT. \' alpha\'\' \'IuI POT. p-2\' in B, u = 0 on \\partial B, where B is the unit open ball in \'R POT. N\' centered at zero and \'alpha\' \'> OR =\' 0. It is shown that for p \' > OR =\' \'2 AST\' \'IND. alpha\' = \'SUP. 2 (N + alpha)\' INF. N - 2, N > 2, \' INFINITY\'; N = 1, 2, \'2 AST\' = { \'SUP. .2N INF. N - 2 ; N > 2; 1; \' INFINITY\', N = 1, 2; the problem does not have nontrivial solution. In counterpart, for 1 < p < \' 2 AST\' \'IND. alpha\' with p \' DIFFERENT\' 2, the existence of radial positive solutions will be guaranteed. Moreover, the uniqueness of positive solution is guaranteed as long as 1 < p < 2. In addition, results on the existence of ground state solutions are presented in case 2 < p < \'2 AST\'. In this interval, it is proved that any ground state solution exhibits the Foliated Schwarz symmetry and, in case \'alpha\' is sufficiently large, it is shown that the no ground state solution is radially symmetric. This works ends with a result on the existence of multiple positive solutions
|
2 |
Dynamics of the energy critical nonlinear Schrödinger equation with inverse square potentialYang, Kai 01 May 2017 (has links)
We consider the Cauchy problem for the focusing energy critical NLS with inverse square potential. The energy of the solution, which consists of the kinetic energy and potential energy, is conserved for all time. Due to the focusing nature, solution with arbitrary energy may exhibit various behaviors: it could exist globally and scatter like a free evolution, persist like a solitary wave, blow up at finite time, or even have mixed behaviors. Our goal in this thesis is to fully characterize the solution when the energy is below or at the level of the energy of the ground state solution $W_a$. Our main result contains two parts.
First, we prove that when the energy and kinetic energy of the initial data are less than those of the ground state solution, the solution exists globally and scatters.
Second, we show a rigidity result at the level of ground state solution. We prove that among all solutions with the same energy as the ground state solution, there are only two (up to symmetries) solutions $W_a^+, W_a^-$ that are exponential close to $W_a$ and serve as the threshold of scattering and blow-up. All solutions with the same energy will blow up both forward and backward in time if they go beyond the upper threshold $W_a^+$; all solutions with the same energy will scatter both forward and backward in time if they fall below the lower threshold $W_a^-$.
In the case of NLS with no potential, this type of results was first obtained by Kenig-Merle \cite{R: Kenig focusing} and Duyckaerts-Merle \cite{R: D Merle}. However, as the potential has the same scaling as $\Delta$, one can not expect to extend their results in a simple perturbative way. We develop crucial spectral estimates for the operator $-\Delta+a/|x|^2$, we also rely heavily on the recent understanding of the operator $-\Delta+a/|x|^2$ in \cite{R: Harmonic inverse KMVZZ}.
|
3 |
Um estudo sobre a equação de Hénon / A sudy on the Héenon equationMaribel Rosa Bravo Quispe 25 February 2013 (has links)
Este trabalho apresenta um estudo quantitativo e qualitativo de soluções positivas para o problema de Dirichlet para a equação de Hénon (P) { - \'DELTA\'u = \'Ix! POT. \' alpha\'\' \'IuI POT. p-2\' em B, u = sobre \\partial B, onde B é a bola unitária aberta de \'R POT. N\' centrada em zero e \'alpha\' > 0. É mostrado que para p \'> OU =\' \'2 AST\' \'IND. \'alpha\'\' = { \'SUP. 2(N + \'alpha)\' \' INF. N - 2\' ; N > 2, \"INFINITO\'; N = 1,2 \'2 AST\' = { \'SUP. 2N\' \'INF. N - 2\' ; N > 2, \'INFINITO\'; N = 1,2, o problema não tem solução não trivial. Em contrapartida, para 1 < p < \'2 AST\'.\' \'IND. \'alpha\'\' com p \'DIFERENTE DE\' 2, a existência de uma solução positiva radial é garantida. Além disso, é provado a unicidade de solução positiva no caso em que 1 < p < 2. Também são apresentados resultados sobre a existência de soluções ground state quando 2 < p < \'2 AST\'. Nesse intervalo, é mostrado que qualquer solução ground state exibe a simetria Schwarz folheada e, no caso em que \'alpha\' é suficientemente grande, é provado que qualquer solução ground state não é radialmente simétrica. Por fim, é apresentado um resultado sobre a existência de múltiplas soluções positivas / This work presents a quantitative and qualitative study of positive solutions for the Dirichlet problem for the Hénon equation (P) (P) { - \'DELTA\'u = \'Ix! POT. \' alpha\'\' \'IuI POT. p-2\' in B, u = 0 on \\partial B, where B is the unit open ball in \'R POT. N\' centered at zero and \'alpha\' \'> OR =\' 0. It is shown that for p \' > OR =\' \'2 AST\' \'IND. alpha\' = \'SUP. 2 (N + alpha)\' INF. N - 2, N > 2, \' INFINITY\'; N = 1, 2, \'2 AST\' = { \'SUP. .2N INF. N - 2 ; N > 2; 1; \' INFINITY\', N = 1, 2; the problem does not have nontrivial solution. In counterpart, for 1 < p < \' 2 AST\' \'IND. alpha\' with p \' DIFFERENT\' 2, the existence of radial positive solutions will be guaranteed. Moreover, the uniqueness of positive solution is guaranteed as long as 1 < p < 2. In addition, results on the existence of ground state solutions are presented in case 2 < p < \'2 AST\'. In this interval, it is proved that any ground state solution exhibits the Foliated Schwarz symmetry and, in case \'alpha\' is sufficiently large, it is shown that the no ground state solution is radially symmetric. This works ends with a result on the existence of multiple positive solutions
|
4 |
On linearly coupled systems of Schrödinger equations with critical growthMelo Júnior, José Carlos de Albuquerque 24 February 2017 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-25T13:08:29Z
No. of bitstreams: 1
arquivototal.pdf: 1324370 bytes, checksum: 6a689c99393e6b9a2a7f27c49ef07a8d (MD5) / Made available in DSpace on 2017-08-25T13:08:29Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1324370 bytes, checksum: 6a689c99393e6b9a2a7f27c49ef07a8d (MD5)
Previous issue date: 2017-02-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In thisworkwestudytheexistenceofgroundstatesforthefollowingclassofcoupled
systems involvingnonlinearSchrödingerequations
8<:
u + V1(x)u = f1(x; u) + (x)v;x 2 RN;
v + V2(x)v = f2(x; v) + (x)u; x 2 RN;
where thepotentials V1 : RN ! R, V2 : RN ! R are nonnegativeandrelatedwith
the couplingterm : RN ! R by j (x)j < pV1(x)V2(x), forsome 0 < < 1. In
the case N = 2, thenonlinearities f1 e f2 havecriticalexponentialgrowthinthesense
of Trudinger-Moserinequality.Inthecase N 3, thenonlinearitiesarepolynomials
with subcriticalandcriticalexponentintheSobolevsense.Westudyalsothefollowing
class ofnonlocalcoupledsystems
8<:
( )1=2u + V1(x)u = f1(u) + (x)v;x 2 R;
( )1=2v + V2(x)v = f2(v) + (x)u; x 2 R;
where ( )1=2 denotes thesquarerootoftheLaplacianoperatorandthenonlinearities
havecriticalexponentialgrowth.Ourapproachisvariationalandbasedon
minimization techniqueovertheNeharimanifold / Neste trabalhoestudamosaexistênciadegroundstatesparaaseguinteclassede
sistemas acopladosenvolvendoequaçõesdeSchrödingernão-lineares
8<:
u + V1(x)u = f1(x; u) + (x)v;x 2 RN;
v + V2(x)v = f2(x; v) + (x)u; x 2 RN;
onde ospotenciais V1 : RN ! R, V2 : RN ! R são não-negativoseestãorelacionados
com otermodeacomplamento : RN ! R por j (x)j < pV1(x)V2(x), paraalgum
0 < < 1. Nocaso N = 2, asnão-linearidades f1 e f2 possuemcrescimentocrítico
exponencialnosentidodadesigualdadedeTrudinger-Moser.Nocaso N 3, asnão-
linearidades sãopolinômioscomexpoentesubcríticoecríticonosentidodeSobolev.
Estudamos aindaaseguinteclassedesistemasacopladosnão-locais
8<:
( )1=2u + V1(x)u = f1(u) + (x)v;x 2 R;
( )1=2v + V2(x)v = f2(v) + (x)u; x 2 R;
onde ( )1=2 denota ooperadorraízquadradadolaplacianoeasnão-linearidades
possuemcrescimentocríticoexponencial.Nossaabordagemévariacionalebaseadana
técnica deminimizaçãosobreavariedadedeNehari.
|
Page generated in 0.1041 seconds