• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 19
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 71
  • 71
  • 13
  • 13
  • 10
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The remediation of heavy metal contaminated water in the Wonderfonteinspruit catchment area using algae and natural zeolite

Diale, Palesa Promise 05 June 2012 (has links)
M. Tech. / Gold (Au) mining in South Africa resulted in vast volumes of hazardous waste being generated. Poor management of most of the tailings dams has resulted in the release of acid mine drainage, which caused stream water and soil contamination with their run-offs. The consequence of mine closure has not only been observed in large-scale land degradation, but also in widespread pollution of surface water and groundwater in the Wonderfonteinspruit Catchment Area (WCA). Thus, clean-up methods must be developed in order to remove heavy metals from contaminated water bodies in this area. The efficacy of algae, zeolite and zeolite functionalized with humic acid in reducing the concentration of the heavy metals iron (Fe3+), zinc (Zn2+), manganese (Mn2+) and nickel (Ni2+) to acceptable levels in WCA was investigated in this study. It is also envisaged that the heavy metals to be removed from contaminated water can be useful in various industries. A sampling exercise was undertaken with the aim of identifying the heavy metals that contaminate the water in the catchment, as well as identify the priority heavy metals for laboratory sorption tests. Batch experiments were conducted to study the adsorption behavior of natural zeolite clinoptilolite and algae Desmodesmus sp. with respect to Fe3+, Mn2+, Ni2+, and Zn2+. The data was analysed using the Langmuir and Freundlich isotherms. Two kinetic models namely, pseudo-first order and pseudo second order were also tested to fit the data. It was found that the concentration of Fe3+, Mn2+, Ni2+ and Zn2+ was 115 mg/L, 121 mg/L, 26.5 mg/L and 6.9 mg/L from the sampled water bodies in the WCA, respectively. The Langmuir isotherm was found to correlate the adsorption of Fe3+, Mn2+, Ni2+, and Zn2+ better, with the adsorption capacity of 11.9 mg/g, 1.2 mg/g, 1.3 mg/g, and 14.7 mg/g, for the functionalized zeolite (FZ), respectively. The algae system gave adsorption capacities of 1.523 mg/g, 144 mg/g and 71.94 mg/g for Fe3+, Mn2+ and Ni2+; respectively. Pseudo second-order equation was found to be the best fit for the adsorption of heavy metals by unfunctionalized zeolite (UFZ) and the algae system. Zeolite functionalization with humic acid increased its uptake ability. The best results for kinetic study was obtained in concentration 120 ppm for Fe3+ and Mn2+, whilst for Ni2+ was at 20 mg/L , which is about the same concentrations found in contaminated water in the WCA (Fe3+ 115 mg/L, Mn2+121 mg/L and Ni2+ 26.5 mg/L).
12

Biological and Chemical Renovation of Wastewater with a Soil Infiltrator Low-Pressure Distribution System

DiPaola, Tracey Stickley 08 July 1998 (has links)
An alternative on-site wastewater treatment and disposal system (OSWTDS) consisting of a soil infiltrator with low pressure distribution was evaluated in a soil that was unsuitable for a conventional OSWTDS under current Commonwealth of Virginia Sewage Handling and Disposal Regulations, due to a shallow seasonally perched water table and low hydraulic conductivity. The absorption field consisted of two subsystems numbered as 1 and 2 with effluent design loading rates of 5.1 and 10.2 Lpd/m2, respectively (actual loading rates of 2.4 and 4.9 Lpd/m2, respectively). Soil matric potentials compared seasonally for each subsystem and indicated that both provided similar hydraulic performance. Background water quality was generally improved by subsurface movement through the absorption fields. A bacterial tracer was found in shallow (45.7 cm) and deep (213.4 cm) sampling wells within 24 h in the two subsystems (but in low numbers) over both summer and winter sampling periods. A viral tracer was detected within 48 h in both shallow and deep wells, but only in subsystem 2 in the winter. In evaluating denitrification potential, the addition of glucose to soil core samples did increase quantitatively, although not significantly, nitrous oxide production in each subsystem, at each depth, during each season. Overall, the performance of both subsystems was very similar. The soil infiltrator functioned very well, as designed for the site and soil limitations. It appears to be a potential alternative OSWTDS for use in problem soils. / Master of Science
13

Numerical Simulation of Hydrocarbon Fuel Dissolution and Biodegradation in Groundwater

Molson, John W.H. January 2000 (has links)
The behaviour of hydrocarbon fuels in contaminated groundwater systems is studied using a multicomponent reactive transport model. The simulated processes include residual NAPL dissolution, aerobic and anaerobic biodegradation with daughter-product transport, and transport of a reactive carrier with mixed equilibrium/kinetic sorption. The solution algorithm is based on a three-dimensional Galerkin finite element scheme with deformable brick elements and capacity for a free watertable search. Nonlinearities are handled through Picard iteration. Convergence is rapid for most applications and mass balance errors for all phases are minimal. The model is first applied to simulate a pilot scale diesel fuel dissolution experiment in which humic acid is used as a natural organic carrier to enhance dissolution and to promote biodegradation of the aqueous components. The pilot scale experiment is described by Lesage et al. (1995) and Van Stempvoort et al. (2000). The conceptual model includes 8 unique components dissolving from 500 mL of residual diesel fuel within a 3D saturated domain. Oxygen-limiting competitive aerobic biodegradation with a dynamic microbial population is also included. A mixed 2-site equilibrium/kinetic model for describing sorption of the carrier to the aquifer solids was adopted to reproduce the observed breakthrough of the humic acid and organic components. Most model parameters were obtained independently with minimal calibration. Batch sorption data were found to fit well at the pilot scale, however biodegradation and dissolution rates were not well known and had to be fitted. Simulations confirmed the observed 10-fold increase in effective solubility of trimethylnaphthalene, and increases on the order of 2-5 for methyl- and dimethylnaphthalene. The simulated plumes showed almost complete attenuation after 5 years, in excellent agreement with observed data. A sensitivity analysis showed the importance of carrier concentrations, binding coefficients, dissolution and biodegradation rates. Compared to a dissolution scenario assuming no carrier, the humic acid-enhanced dissolution case decreased the remediation time by a factor of about 5. The second application of the model involves simulating the effect of ethanol on the persistence of benzene in gasoline-impacted groundwater systems. The conceptual model includes a 4-component residual gasoline source which is dissolving at the watertable into a 3D aquifer. Comparisons are made between dissolved plumes from a gasoline spill and those from an otherwise equivalent gasohol spill. Simulations have shown that under some conditions, a 10% ethanol component in gasoline can extend the travel distance of a benzene plume by at least 150% relative to that from an equivalent ethanol-free gasoline spill. The increase is due to preferred consumption of oxygen by ethanol and a corresponding reduction in the biodegradation rate of benzene while the two plumes overlap. Because of differences in retardation however, the ethanol and benzene plumes gradually separate. The impact therefore becomes limited because oxygen rapidly disperses behind the ethanol plume and benzene degradation eventually resumes. A sensitivity analysis for two common spill scenarios showed that background oxygen concentrations, and benzene retardation had the most significant influence on benzene persistence. A continuous gasohol spill over 10 years was found to increase the benzene travel distance by over 120% and a pure ethanol spill into an existing gasoline plume increased benzene travel distance by 150% after 40 years. The results are highly relevant in light of the forthcoming ban of MTBE in California and its likely replacement by ethanol by the end of 2002.
14

Effect of ethanol on BTEX biodegradation in aerobic aquifer systems

Williams, Erika C. January 2007 (has links)
Ethanol can affect the biodegradation of gasoline hydrocarbons in groundwater. High concentrations of ethanol can be toxic to subsurface microorganisms that are otherwise capable of degrading hydrocarbons, such as benzene, toluene, ethylbenzene and xylenes (BTEX). At lower concentrations, ethanol may hinder BTEX degradation through substrate competition and the depletion of inorganic nutrients (e.g., nitrogen and phosphorus), oxygen and other electron acceptors needed for BTEX degradation. A series of laboratory experiments were designed to study the effect of ethanol on aquifer microorganisms and on aerobic BTEX biodegradation. A microcosm experiment was conducted to investigate the effect of ethanol on the biodegradation of BTEX. Microcosms were set up with Borden aquifer material and groundwater in which oxygen and nutrients were not limited. These microcosms contained BTEX in combination with a range of ethanol concentrations. Under these favourable conditions, the presence of ethanol up to concentrations of 1.9% (v/v) (equivalent to 15000 mg/L) caused little inhibition of BTEX degradation. Further experiments were conducted to study the antimicrobial effects of higher concentrations of ethanol. Following exposure to ethanol concentrations of 25% (v/v) or higher, microbial activity and survival was significantly diminished. Results suggest that a high concentration ethanol slug will have a major impact on the microbial community but that there would likely be potential for recovery. The recovery potential was examined further in laboratory column experiments designed to simulate a dynamic field situation where a high ethanol pulse is followed by a BTEX plume. These column experiments were conducted with Borden aquifer material and groundwater under aerobic conditions. The concentration of the ethanol pulse was 25% (v/v), which was expected to significantly alter the microbial population without destroying it. Following the ethanol exposure, groundwater and BTEX were allowed to flow through one column to simulate the reinoculation of microorganisms from upgradient groundwater advecting into the contaminated zone. The other column was fed with sterile groundwater and BTEX to evaluate the regeneration of within-column microorganisms that survived the ethanol exposure. Recovery in both columns was rapid. Unfortunately, during the recovery phase, sterility of the influent groundwater could not be maintained. As a result, recovery by regeneration could not be evaluated. Nonetheless, it is evident that recovery in terms of aerobic BTEX biodegradation was significant under the conditions of the column experiment. Ethanol did not appear to pose a long-term impact on BTEX biodegradation when oxygen and nutrients were in excess. In field situations, nutrients and electron acceptors may be limited; however, ethanol toxicity is not likely to cause a prolonged inhibition of BTEX biodegradation.
15

Numerical Simulation of Hydrocarbon Fuel Dissolution and Biodegradation in Groundwater

Molson, John W.H. January 2000 (has links)
The behaviour of hydrocarbon fuels in contaminated groundwater systems is studied using a multicomponent reactive transport model. The simulated processes include residual NAPL dissolution, aerobic and anaerobic biodegradation with daughter-product transport, and transport of a reactive carrier with mixed equilibrium/kinetic sorption. The solution algorithm is based on a three-dimensional Galerkin finite element scheme with deformable brick elements and capacity for a free watertable search. Nonlinearities are handled through Picard iteration. Convergence is rapid for most applications and mass balance errors for all phases are minimal. The model is first applied to simulate a pilot scale diesel fuel dissolution experiment in which humic acid is used as a natural organic carrier to enhance dissolution and to promote biodegradation of the aqueous components. The pilot scale experiment is described by Lesage et al. (1995) and Van Stempvoort et al. (2000). The conceptual model includes 8 unique components dissolving from 500 mL of residual diesel fuel within a 3D saturated domain. Oxygen-limiting competitive aerobic biodegradation with a dynamic microbial population is also included. A mixed 2-site equilibrium/kinetic model for describing sorption of the carrier to the aquifer solids was adopted to reproduce the observed breakthrough of the humic acid and organic components. Most model parameters were obtained independently with minimal calibration. Batch sorption data were found to fit well at the pilot scale, however biodegradation and dissolution rates were not well known and had to be fitted. Simulations confirmed the observed 10-fold increase in effective solubility of trimethylnaphthalene, and increases on the order of 2-5 for methyl- and dimethylnaphthalene. The simulated plumes showed almost complete attenuation after 5 years, in excellent agreement with observed data. A sensitivity analysis showed the importance of carrier concentrations, binding coefficients, dissolution and biodegradation rates. Compared to a dissolution scenario assuming no carrier, the humic acid-enhanced dissolution case decreased the remediation time by a factor of about 5. The second application of the model involves simulating the effect of ethanol on the persistence of benzene in gasoline-impacted groundwater systems. The conceptual model includes a 4-component residual gasoline source which is dissolving at the watertable into a 3D aquifer. Comparisons are made between dissolved plumes from a gasoline spill and those from an otherwise equivalent gasohol spill. Simulations have shown that under some conditions, a 10% ethanol component in gasoline can extend the travel distance of a benzene plume by at least 150% relative to that from an equivalent ethanol-free gasoline spill. The increase is due to preferred consumption of oxygen by ethanol and a corresponding reduction in the biodegradation rate of benzene while the two plumes overlap. Because of differences in retardation however, the ethanol and benzene plumes gradually separate. The impact therefore becomes limited because oxygen rapidly disperses behind the ethanol plume and benzene degradation eventually resumes. A sensitivity analysis for two common spill scenarios showed that background oxygen concentrations, and benzene retardation had the most significant influence on benzene persistence. A continuous gasohol spill over 10 years was found to increase the benzene travel distance by over 120% and a pure ethanol spill into an existing gasoline plume increased benzene travel distance by 150% after 40 years. The results are highly relevant in light of the forthcoming ban of MTBE in California and its likely replacement by ethanol by the end of 2002.
16

Effect of ethanol on BTEX biodegradation in aerobic aquifer systems

Williams, Erika C. January 2007 (has links)
Ethanol can affect the biodegradation of gasoline hydrocarbons in groundwater. High concentrations of ethanol can be toxic to subsurface microorganisms that are otherwise capable of degrading hydrocarbons, such as benzene, toluene, ethylbenzene and xylenes (BTEX). At lower concentrations, ethanol may hinder BTEX degradation through substrate competition and the depletion of inorganic nutrients (e.g., nitrogen and phosphorus), oxygen and other electron acceptors needed for BTEX degradation. A series of laboratory experiments were designed to study the effect of ethanol on aquifer microorganisms and on aerobic BTEX biodegradation. A microcosm experiment was conducted to investigate the effect of ethanol on the biodegradation of BTEX. Microcosms were set up with Borden aquifer material and groundwater in which oxygen and nutrients were not limited. These microcosms contained BTEX in combination with a range of ethanol concentrations. Under these favourable conditions, the presence of ethanol up to concentrations of 1.9% (v/v) (equivalent to 15000 mg/L) caused little inhibition of BTEX degradation. Further experiments were conducted to study the antimicrobial effects of higher concentrations of ethanol. Following exposure to ethanol concentrations of 25% (v/v) or higher, microbial activity and survival was significantly diminished. Results suggest that a high concentration ethanol slug will have a major impact on the microbial community but that there would likely be potential for recovery. The recovery potential was examined further in laboratory column experiments designed to simulate a dynamic field situation where a high ethanol pulse is followed by a BTEX plume. These column experiments were conducted with Borden aquifer material and groundwater under aerobic conditions. The concentration of the ethanol pulse was 25% (v/v), which was expected to significantly alter the microbial population without destroying it. Following the ethanol exposure, groundwater and BTEX were allowed to flow through one column to simulate the reinoculation of microorganisms from upgradient groundwater advecting into the contaminated zone. The other column was fed with sterile groundwater and BTEX to evaluate the regeneration of within-column microorganisms that survived the ethanol exposure. Recovery in both columns was rapid. Unfortunately, during the recovery phase, sterility of the influent groundwater could not be maintained. As a result, recovery by regeneration could not be evaluated. Nonetheless, it is evident that recovery in terms of aerobic BTEX biodegradation was significant under the conditions of the column experiment. Ethanol did not appear to pose a long-term impact on BTEX biodegradation when oxygen and nutrients were in excess. In field situations, nutrients and electron acceptors may be limited; however, ethanol toxicity is not likely to cause a prolonged inhibition of BTEX biodegradation.
17

Development of in situ oxidative-barrier and biobarrier to remediate organic solvents-contaminated groundwater

Liang, Shu-hao 06 September 2011 (has links)
Soil and groundwater at many existing and former industrial areas and disposal sites is contaminated by organic solvent compounds that were released into the environment. Organic solvent compounds are heavier than water. When they are released into the subsurface, they tend to adsorb onto the soils and cause the appearance of LNAPL (light nonaqueous phase liquid) and DNAPL (dense nonaqueous phase liquid) pool. The industrial petroleum hydrocarbons (e.g., methyl tertiary-butyl ether, MTBE and benzene) and chlorinated solvent (e.g., trichloroethylene, TCE) are among the most ubiquitous organic compounds found in subsurface contaminated environment. One cost-effective approach for the remediation of the chlorinated solvent and petroleum products contaminated aquifers is the installation of permeable reactive zones or barriers within aquifers. As contaminated groundwater moves through the emplaced reactive zones, the contaminants are removed, and uncontaminated groundwater emerges from the downgradient side of the reactive zones. The objectives of this study were developed to evaluate the feasibility of applying in-situ chemical oxidation (ISCO) barrier and in-situ slow polycolloid-releasing substrate (SPRS) biobarrier system on the control of petroleum hydrocarbons and chlorinated solvent plume in aquifer. In the ISCO barrier system, it contained oxidant-releasing materials, to release oxidants (e.g., persulfate) contacting with water for oxidating contaminants existed in groundwater. In this study, laboratory-scale fill-and-draw experiments were conducted to determine the compositions ratios of the oxidant-releasing materials and evaluate the persulfate release rates. Results indicate that the average persulfate-releasing rate of 7.26 mg S2O82-/d/g was obtained when the mass ratio of sodium persulfate/cement/sand/water was 1/1.4/0.24/0.7. The column study was conducted to evaluate the efficiency of in situ application of the developed ISCO barrier system on MTBE and benzene oxidation. Results from the column study indicate that approximately 86-92% of MTBE and 95-99% of benzene could be removed during the early persulfate-releasing stage (before 48 pore volumes of groundwater pumping). The removal efficiencies for MTBE and benzene dropped to approximately 40-56% and 85-93%, respectively, during the latter part of the releasing period due to the decreased persulfate-releasing rate. Results reveal that acetone, byproduct of MTBE, was observed and then further oxidized completely. Results suggest that the addition of ferrous ion would activate the persulfate oxidation. However, excess ferrous ion would compete with organic contaminants for persulfate, causing the decrease in contaminant oxidation rates. In the SPRS biobarrier system, the food preparation industry has tremendous experiences in producing stable oil-in-water (W/O, 50/50) emulsions with a uniformly small droplet size. Surfactant mixture (71 mg/L of SL and 72 /L of SG) blending with water could yield a stable and the optimal emulsion was considered the best. The small absolute value of the emulsion zeta potential reduces inter-particle repulsion, causing the emulsion droplets to stick to each other when they collided. Overtime, large masses of flocculated droplets can form which then clog the sediment pores. The results can be used to predict abiotic interactions and distribution of contaminant mass expected after SPRS injection, and thus provides a more accurate estimate of the mass of TCE removed due to enhanced biodegradation. The effect of TCE partitioning to the vegetable oil on contaminant migration rates can be approximated using a retardation factor approach, where 0.28 years through a 3 m barrier. In anaerobic microcosm experiments, result show that SPRS can be fermented to hydrogen and acetate could be used as a substrate to simulate reductive dehalorination. The apparent complete removal of nitrate and sulfate by SPRS addition was likely a major factor that promoted the complete reduction of TCE at later stages of this study. Results from the column experiment indicate that occurrence of anaerobic reductive dechlorination in the biobarrier system can be verified by: (1) the oil: water partition coefficients of dissolved TCE into vegetable oil were be used to predict abiotic interactions and distribution of contaminant mass expected after SPRS injection. (2) The SPRS can ferment to hydrogen and acetate could be used as a substrate to simulate reductive dechlorination. The proposed treatment scheme would be expected to provide a more cost-effective alternative to remediate other petroleum hydrocarbons and chlorinated solvents-contaminated aquifers. Experiments and operational parameters obtained from this study provide an example to design a passive barriers system for in-site remediation.
18

Espacialização das estimativas de contaminação de água subterrânea por defensivos agrícolas

Moraes, Diego Augusto de Campos [UNESP] 27 February 2012 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:46Z (GMT). No. of bitstreams: 0 Previous issue date: 2012-02-27Bitstream added on 2014-06-13T20:15:41Z : No. of bitstreams: 1 moraes_dac_me_botfca.pdf: 849456 bytes, checksum: c3e1db334cc08afff00ab382d3952add (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Universidade Estadual Paulista (UNESP) / O uso inadequado de defensivos agrícolas pode levar a impactos ambientais relevantes, como a contaminação de diversos compartimentos ambientais, sendo os mais vulneráveis, os compartimentos aquáticos. Nesse contexto, a espacialização das estimativas de concentração de defensivos agrícolas na água subterrânea fornece importantes subsídios para a tomada de decisão no gerenciamento e monitoramento do uso de defensivos agrícolas. Assim, este trabalho teve por objetivo espacializar as estimativas de contaminação de águas subterrâneas por defensivos agrícolas, considerando diferentes lâminas de irrigação na Bacia do Rio Pardo, Pardinho-SP. As simulações realizadas com o sistema computacional ARAquá foram realizadas considerando quatro defensivos agrícolas e cinco lâminas de irrigação. Técnicas geoestatísticas foram utilizadas em conjunto com as simulações para obter a espacialização dessas estimativas. Foram obtidos os mapas das estimativas de concentração de defensivos agrícolas na água subterrânea pelo método de interpolação por krigagem, sendo que estes indicaram as áreas com maior potencial de contaminação da água subterrânea. Considerando todas as simulações pode-se concluir que não houve risco de contaminação da água subterrânea por defensivos agrícolas e que as maiores concentrações foram obtidas considerando uma lâmina de irrigação anual de 400 mm. As simulações estimaram que as áreas com maior potencial de contaminação da água subterrânea foram as mais próximas da rede drenagem da Bacia do Rio Pardo. As técnicas de geoestatística contribuíram fortemente para a espacialização das estimativas de concentração de defensivos agrícolas na água subterrânea, por meio da análise dos variogramas e dos mapas gerados pela interpolação por krigagem / Improper use of pesticides can lead to significant environmental impacts such as contamination of environmental compartments, the most vulnerable, the aquatic compartments. In this context, the spatialization of the estimating concentrations of pesticides in groundwater provides important insights for decision making in managing and monitoring of the use of pesticides. Thus, this study aimed to spatialize the estimating of groundwater contamination by pesticides, with different irrigation blades in the Rio Pardo basin, Pardinho-SP. The simulations were performed with the computer system ARAquá considering four pesticides and five irrigation blades. Geostatistical techniques were used in conjunction with the simulations to obtain the spatial distribution of the estimating. The maps of the estimating concentration of pesticides in groundwater were obtained by Kriging interpolation method, and these indicate the areas with greatest potential for groundwater contamination. Considering all the simulations can be concluded that there was no risk of groundwater contamination by pesticides and that the highest concentrations were obtained considering an anual irrigation blade of 400 mm. The simulations have estimated that the areas with greatest potential for groundwater contamination were the closest to the drainage network of the Rio Pardo basin. Geostatistical techniques have contributed greatly to the estimates of spatial concentration of pesticides in ground water, through the analysis of variograms and maps generated by Kriging interpolation
19

Heterogeneidades geológicas e o gerenciamento de áreas contaminadas em local situado na Interface da Serra do Mar com a Planície Aluvionar do Rio Cubatão (Cubatão/SP) /

Alberto, Marcio Costa. January 2010 (has links)
Orientador: Chang Hung Kiang / Banca: Paulo Milton Barbosa Landim / Banca: Didier Gastmans / Banca: Elton Gloeden / Banca: Fernando Krahenbul / Resumo: O gerenciamento de áreas contaminadas objetiva eliminar riscos pela contaminação de água subterrânea em áreas industriais. O comportamento de contaminantes também é controlado pela configuração das litologias, sendo necessária a caracterização geológica para estabelecer um modelo geológico conceitual, subsidiando as ações futuras de investigação e remediação. Em áreas geologicamente complexas, a distribuição das litologias deve ser enfocada, pois, apresenta variação significativa, e o seu conhecimento é de difícil estabelecimento com dados sem qualidade e quantidade. As incertezas associadas à heterogeneidade, tornam mais complexo o conhecimento destas. Neste estudo, foi aplicada investigação em área de Cubatão (SP), geologicamente heterogênea, iniciando pela caracterização regional, estabelecendo o modelo conceitual, a gênese das litologias e simulação numérica de fluxo da água subterrânea para verificação do modelo. Para simulação hipotética de um poço para remediação, foi utilizada simulação estocástica para definição da distribuição litológica, pois, a heterogeneidade pode apresentar diversos cenários para um mesmo conjunto de informações. Estas simulações geraram cenários, utilizados para simulação do poço, obtendo-se distintas zonas de captura. Os efeitos da heterogeneidade mostram que, para projeção de sistema de remediação, devem ser considerados diversos arranjos litológicos, pois, considerando-se modelos simplistas, a remediação será ineficiente, aumentando os custos para novas investigações e ações de remediação adicionais / Abstract: The management of contaminated areas aims to eliminate the risk of groundwater contamination in industrial areas. The behavior of contaminants is controlled by the configuration of lithologies, where geological characterization was needed to establish a conceptual geological model, supporting the actions of future investigation and remediation. In geologically complex areas, the distribution of lithologies should be focused, therefore, the distribution is also complex, and their knowledge is difficult to establish with no data quality and quantity. Uncertainties related to heterogeneity become more complex its definition. In this study, it was applied research in an area located at Cubatão (SP), geologically heterogeneous, starting with the regional characterization, setting the conceptual model, genesis of the lithologies and numerical simulation for model verification. For the simulation of a hypothetical well for remediation, stochastic simulation was used to define the lithological distribution, therefore, the heterogeneity may present different scenarios for a given set of information. These simulations generated scenarios used for simulation of extraction well, resulting in different capture zones. The effects of heterogeneity suggests that for projecting remediation system should be considered different lithological distribution, therefore, considering simplistic models, remediation will be inefficient, increasing costs for new investigations and further remediation actions / Doutor
20

Evaluation of Contaminant Attenuation in a Mining Impacted Aquifer, Stark County, Ohio

Adams, Heather R. January 2015 (has links)
No description available.

Page generated in 0.1547 seconds