• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 372
  • 42
  • 10
  • 8
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 491
  • 491
  • 87
  • 60
  • 50
  • 50
  • 47
  • 39
  • 33
  • 31
  • 31
  • 28
  • 28
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Classification of environmental hydrologic behaviors in Northeastern United States

Kim, Kye Hyun, 1956- January 1989 (has links)
Environmental response to acidic deposition occurs through the vehicle of water movement in the ecosystem. As a part of the environmental studies for acidic deposition in the ecosystem, output-based hydrologic classification was done from basin hydrologies based on the distribution of the baseflow, snowmelt, and the direct runoff sources. Because of the differences in the flow paths and exposure duration, those components were assumed to represent distinct geochemical responses. As a first step, user-friendly software has been developed to calculate the baseflow based on the separation of annual hydrographs. It also generates the hydrograph for visual analysis using trial separation slope. After the software was completed, about 1200 stream flow gauging stations in Northeastern U.S. were accessed for flow separation and other hydrologic characteristics. At the final stage, based on the output from the streamflow analysis, cluster analysis was performed to classify the streamflow behaviors in terms of acidic inflow. The output from the cluster analysis shows more efficient regional boundaries of the subregions than the current regional boundaries used by U.S. Environmental Protection Agency (U.S.E.P.A.) for the environmental management in terms of acidic deposition based on the regional baseflow properties.
392

A water balance approach to groundwater recharge estimation in Montagu area of the Western Klein Karoo.

Sun, Xianfeng January 2005 (has links)
This aim of this study was to improve the understanding and functioning of the Table Mountain Group aquifer system and contribute to the sustainable development of this potential source for water supply in the Montagu area.
393

Matematický model proudění podzemní vody v českobrodském permokarbonu / Mathematical model of groundwater flow in the permo-carniferous region of the Český Brod environs

Brožová, Magda January 2013 (has links)
The aim of this thesis is an overall assessment of the hydrogeological conditions of the Český Brod Permian Carboniferous and overall the balance of upper groundwater aquifer in the northern part of the Český Brod Permian Carboniferous using a mathematical model. For the realization of the model was used ZABAGED data provided by the Czech Office for Surveying, Mapping and Cadastre, which is located in Prague 8 Kobylsích. The mathematical model was created using computer applications such as FeFlow 5. 2, ArcGIS for Desktop 10. 1 and Surfer 10. 7. 972. The result of this work is to evaluate the overall balance of precipitation, surface water and groundwater in the upper aquifer north of Český Brod Permian Carboniferous, respectively, in the hydrologic basin of the Upper and Middle Elbe, in the hydrological basin fourth Order river Vyrovka (HEIS.VUV.cz). The evaluation was done by comparing the data obtained from the studied opinions and based on data obtained from calculations of the mathematical model. The results of the mathematical model were also compared with the original model hydroizohyps, which was created based on the coordinates of the individual wells in a given area and treble steady groundwater levels, coordinate and treble levels of selected points on each watercourse. Before completing...
394

Biogeochemical interactions of natural organic matter with arsenic in groundwater

Kulkarni, Harshad Vijay January 1900 (has links)
Doctor of Philosophy / Department of Civil Engineering / David R. Steward / Groundwater contamination with arsenic (As), a naturally occurring metalloid, is a worldwide problem. Over 100 million people are at health risk due to arsenic contaminated groundwater, especially in the Bengal Basin in south-east Asia. Dissolved organic matter (DOM), geology and geomicrobiology are important factors affecting arsenic mobility. This study focuses on interactions of different aspects of natural organic matter in arsenic-contaminated environments. A literature review specifically includes past studies done on fundamentals of arsenic geology, geomicrobiology, DOM characterization and relevant analytical methods and tools. Based on background information already collected, this research is focused on specific research questions and corresponding hypotheses. The overarching goal of this investigation is to better understand the mechanisms by which DOM influences arsenic mobilization. The specific goals of this research are: 1) to evaluate role of oxidized humic quinones in reductive dissolution of Fe-As minerals and subsequent arsenic mobilization via electron shuttling, 2) to quantify the rate of microbially mediated reductive dissolution in the presence of oxidized humic quinones, 3) to evaluate DOM-Fe-As ternary complex formation and its influence on arsenic mobility and 4) to characterize DOM in the arsenic-contaminated aquifers of West Bengal, India and evaluate its role in arsenic mobilization using groundwater flow and contaminant transport modeling approach. Results of this study revealed that oxidized quinone like moieties (such as fulvic acids) serve as an electron shuttle and enhance the reductive dissolution process under reducing conditions, hence mobilize the arsenic in groundwater. Another key result from this study suggested that arsenic binds with non-aromatic portion of the humic-like DOM under reducing conditions and increases its solution concentration. A field study conducted in West Bengal, India revealed that the mechanisms studied in the laboratory exists in reducing aquifer. A groundwater flow and reactive transport model was created to explain multiple interactions of DOM and arsenic spatial scales. Broader impacts of this study include significant addition to scientific knowledge about subsurface biogeochemistry and the role of DOM in biogeochemical reactions in the subsurface.
395

[en] NUMERICAL IMPLEMENTATION OF ACOPPLING SURFACE WATER: GROUNDWATER / [pt] UMA IMPLEMENTAÇÃO NUMÉRICA DO ACOPLAMENTO ÁGUA SUPERFICIAL: ÁGUA SUBTERRÂNEA

JOAO PAULO CASTAGNOLI 14 December 2007 (has links)
[pt] A relação entre os processos hidrológicos de escoamento superficial e subterrâneo apresenta uma grande variabilidade espacial e temporal. Podendo ser representado de forma qualitativa como parte sequêncial do ciclo hidrológico, estes processos, demostram sua grande dependência e importância nos estudos de balanços hídricos. Visando uma representação quantitativa, este trabalho faz o acoplamento, entre os modelos numéricos de escoamento superficial e de fluxo em meios porosos. Para o meio poroso adotou-se o modelo numérico SWMS_3D (Simunek et al, 1995), o qual resolve a equação de Richards, para fluxo em meios porosos saturados e não saturados nas três dimensões. Na simulação da dinâmica superficial, foram desenvolvidos dois modelos derivados das equações de Saint- Venant: o modelo da Onda Cinemática e o modelo de Difusão. Para a solução numérica foi empregado o método dos elementos finitos através da formulaçao de Galerkin, adotando uma malha tridimensional de elementos tetraédricos, formando uma sub-malha de elementos triangulares na superfície. O modelo de escoamento superficial emprega a malha triangular e interage com o programa SWMS_3D modificado (que utiliza a malha de tetraédros) através das imposições das condições de contorno transientes. Este, responderá com uma parcela de fluxo correspondente à recarga ou descarga no contorno a cada passo de tempo. Com isso, o modelo gerado é capaz de quantificar espacialmente e temporalmente as cargas de pressão em todos os pontos do domínio de estudo. / [en] While analyzing the interaction between the hydrological processes of surface and groundwater flow, it is seen that there is a big difference in its interaction in the space and time. These processes can be represented in a qualitative form as part of the hydrological cycle, demonstrating its dependences and importance in the hydrological balance. This work does the numerical coupling of the surface and groundwater flow. This work adopted the SWMS_3D numerical model (Simunek et. al., 1995), which resolves the Richards equation for saturated and non saturated porous media flow in 3D. In order to simulate the superficial dynamic flow, two models from Saint-Vennat equation were developed, these models are: the cinematic wave model and the diffusion model. These two models consider the average outflow in sections in a 2D scenario. For the numerical solution the finite element method was adopted through the Galerkin formulation. Adopting a 3D domain mesh of tetrahedral elements, seen from above, in 2D, we can see a triangular element mesh. The superficial flow model uses the triangular mesh and iterates with the SWMS_3D modified software, which uses the tetrahedral elements mesh. This was done by changes in the boundary conditions to the models. The SWMS_3D will answer with a flow portion corresponding to a sink or source action in the surface, in each time step. Finally the generated model is able to quantify in space and in time the pressure head in the study domain.
396

Comparing the hydrogeological prospectivity of three UK locations for deep radioactive waste disposal

Hipkins, Emma Victoria January 2018 (has links)
The UK has a large and growing inventory of higher activity radioactive waste awaiting safe long term disposal. The international consensus is to dispose of this radioactive and toxic waste within a deep geological repository, situated 200-1,000 metres beneath the ground surface. The deep geological disposal facility is designed to be a series of engineered and natural barriers. Groundwater forms an integral component of the natural barrier because it 1) controls the flux of reactive components towards the engineered repository, and 2) forms one of the primary transport mechanism through which released radionuclides can be transported away from the repository. The timescale of protection provided by the natural barrier exceeds those provided by the engineered barriers. Knowledge of the regional hydrogeology is a vital step towards predicting the long term performance of any potential repository site. Topically, a UK government decision in 2017 to re-open a nation-wide repository location search has now created a renewed mandate for site exploration. This research aims to determine the regional groundwater characteristics of three UK settings, selected to be hydrogeologically distinct, in order to determine which, if any, offers natural long term hydrogeological containment potential. The settings selected for analysis include Sellafield in West Cumbria, the Tynwald Basin within the East Irish Sea Basin, and Thetford within East Anglia. Site selection is based on diverse groundwater characteristics, and on previous research suggesting potential hydrogeological suitability at these locations. This research is novel in that it provides, for the first time, a direct comparison between the characteristics and qualities of different regional groundwater settings to contain and isolate radioactive waste, based on UK site specific data. Large and detailed numerical models for the three sites, covering areas of 30 km length by 2- 4 km depth have been developed using the open source finite element code 'OpenGeoSys'. The models couple the physical processes of liquid flow and heat transport, in order to replicate regional scale groundwater flow patterns. Models are calibrated to measured rock properties, and predict groundwater behaviour 10,000 years into the future. Uncertain parameter ranges of lithological and fault permeabilities, and peak repository temperatures are tested to determine the possible range of groundwater outcomes. Geochemical retention is assessed separately and validated using the finite difference modelling software 'GoldSim'. Worst case groundwater characteristics for containment and isolation at each site are compared to an 'ideal' benchmark far-field hydrogeological outflow scenario, and scored accordingly using a newly proposed method of assessment. Results show that the Tynwald Basin offers the best potential of the three sites for natural radionuclide containment, performing between 3.5 and 4 times better than Sellafield, and between 1.7 and 4 times better than Thetford. The Tynwald Basin is characterised by 1) long and deep groundwater pathways, and 2) slow local and regional groundwater movement. Furthermore, the Tynwald Basin is located at a feasible tunnelling distance from the coast, adjacent to the UK's current nuclear stockpile at Sellafield, and thus could provide a simple solution to the current waste legacy problem. Results from the Sellafield model indicate that this location cannot be considered to exhibit beneficial characteristics due to short and predictable groundwater pathways which ascend, from the repository, towards surface aquifers. Finally, Thetford within East Anglia has never been drilled to depth so that sub-surface rock properties of basement, located beneath layered sediments, are based on evidence inferred from around the UK. Uncertainties in rock properties has produced a wide range of groundwater characteristic possibilities, with results indicting prospective performance to range from 0 to 2.4 times better than Sellafield. As such, the hydrogeological suitability to host a potential deep geological repository is promising when modelled with most-likely permeability values, but cannot be accurately determined at present. Consideration of decaying heat from the heat emitting waste packages at the three sites reveal that the natural groundwater flow patterns can be distorted up to as much as 7 km away from the theoretical repository, depending on setting. This thus changes the use of the term 'near-field' for safety assessments, as implying an area within the immediate vicinity of the excavated repository site. The overarching findings from this research are that: 1) some locations have greater long term radionuclide containment and isolation prospectivity than others, due to variable quality far-field geological and hydrogeological characteristics; 2) the effect of radiogenic heat emission on the natural groundwater flow pattern is dependent on the site specific geological and hydrogeological characteristics, and therefore so is the area defined as the 'near-field'; and 3) a simple method of site comparison is possible for regional groundwater system under steadystate conditions. Recommendations are for scoping models of regional groundwater settings to be used as a comparative tool, such as undertaken as part of this research, to differentiate between potential sites at an early stage of the current UK site selection programme.
397

Predicting Seepage of Leachate from the St. Johns Landfill to Ground and Surface Water Systems

Schock, Kevin A. 11 June 1993 (has links)
Determination of the vertical and horizontal groundwater hydraulic gradient within a landfill is the first step in determining the potential of groundwater contamination from the landfill leachate. The length of a study and the frequency at which measurements are recorded can greatly affect the description of the local groundwater environment. A more comprehensive analysis can be preformed for longer periods of study and greater measurement frequency. The intent of this study was to install a continuous groundwater level monitoring system around the st. Johns Landfill for a minimum study length of one year. This would allow a more thorough study of the seasonal character and behavior of the groundwater system beneath the landfill than in previous studies. Particular interest was paid to groundwater level changes resulting from seasonal weather changes. Additional attention was paid to other forcing mechanisms which could be perturbing groundwater levels, and variations in the geochemical groundwater constituents. Included throughout this report is a literature review of various studies pertinent to the analysis of groundwater level variations. Seasonal variations in vertical groundwater hydraulic gradients were reviewed and time averaged vertical seepage rates were estimated. Areal plots of groundwater levels were used to view expected horizontal groundwater hydraulic gradients during seasonal maximum and minimum groundwater levels. A computer model was developed to study the effects temporal variations in slough water levels had on groundwater seepage rates through the perimeter dike separating the landfill from the sloughs. The modeling provided an estimate of the average horizontal leachate seepage rate into the sloughs. Comparison plots of monitoring well groundwater levels were used to analyze potential swash zones beneath the landfill and potential effects of lowered water levels in Bybee Lake. Spectral analysis techniques were imployed to determine the dominant frequencies observed in the groundwater levels, allowing determination of the type of forcing mechanism driving the fluctuations. Geochemical groundwater constituents were statistically analyzed to determine the significance of observed trends in the data: areal plots of chloride concentrations and electrical conductivity were made to view constituent distributions within the underlying aquifers. Estimated vertical and horizontal groundwater seepage rates into the local waters showed that horizontal leachate seepage is insignificant compared to vertical leachate seepage. Groundwater level comparison plots indicated no significant swashing beneath the landfill occurred. The statistical studies on groundwater forcing mechanisms indicated that either the slough or the Columbia River water levels could be perturbing groundwater levels. Trend analyses on the geochemical groundwater constituents indicated significant, positive trends in chloride concentrations, and undeterminable trends in electrical conductivity.
398

Numerical accuracy of variable-density groundwater flow and solute transport simulations

Woods, Juliette Aimi. January 2004 (has links) (PDF)
"January 14, 2004" Includes bibliographical references (leaves 201-213)
399

Numerical Accuracy of Variable-Density Groundwater Flow and Solute Transport Simulations

Woods, Juliette January 2004 (has links)
The movement of a fluid and solute through a porous medium is of great practical interest because this describes the spread of contaminants through an aquifer. Many contaminants occur at concentrations sufficient to alter the density of the fluid, in which case the physics is typically modelled mathematically by a pair of coupled, nonlinear partial differential equations. There is disagreement as to the exact form of these governing equations. Codes aiming to solve some version of the governing equations are typically tested against the Henry and Elder benchmark problems. Neither benchmark has an analytic solution, so in practice they are treated as exercises in inter code comparison. Different code developers define the boundary conditions of the Henry problem differently, and the Elder problems results are poorly understood. The Henry, Elder and some other problems are simulated on several different codes, which produce widely-varying results. The existing benchmarks are unable to distinguish which code, if any, simulates the problems correctly, illustrating the benchmarks' limitations. To determine whether these discrepancies might be due to numerical error, one popular code, SUTRA, is considered in detail. A numerical analysis of a special case reveals that SUTRA is numerically dispersive. This is confirmed using the Gauss pulse test, a benchmark that does have an analytic solution. To further explain inter code discrepancies, a testcode is developed which allows a choice of numerical methods. Some of the methods are based on SUTRA's while others are finite difference methods of varying levels of accuracy. Simulations of the Elder problem reveal that the benchmark is extremely sensitive to the choice of solution method: qualitative differences are seen in the flow patterns. Finally, the impact of numerical error on a real-world application, the simulation of saline disposals, is considered. Saline disposal basins are used to store saline water away from rivers and agricultural land in parts of Australia. Existing models of disposal basins are assessed in terms of their resemblance to real fieldsite conditions, and in terms of numerical error. This leads to the development of a new model which aims to combine verisimilitude with numerical accuracy. / Thesis (Ph.D.)--School of Mathematical Sciences (Applied Mathematics), 2004.
400

Characterization of unsaturated zone hydrologic properties and their influence on lateral diversion in a volcanic tuff at Yucca Mountain, Nevada

Flint, Lorraine E. 19 February 2002 (has links)
The study of the subsurface flow and distribution of water is critical to the evaluation of the unsaturated zone for a potential geologic high-level radioactive waste repository. This site is located at Yucca Mountain, Nevada in the northern Mojave Desert. and was chosen on the basis of its low precipitation, deep unsaturated zone, and layered volcanic rocks providing the potential for natural hydraulic barriers to reduce the downward percolation of water through the waste storage area. The detailed characterization of hydrologic properties is necessary to evaluate the mechanisms responsible for the distribution and flow of water in the unsaturated zone. Analyses in this study have provided detailed hydrogeologic units with unique hydrologic properties and hydraulic parameters. Porosity was determined to be a useful physical property for predicting hydraulic parameters, as it relates to the largescale deterministic processes that created the volcanic rocks. The detailed property dataset, along with field measurements of moisture status, temperature, and chemistry, were used to evaluate the potential for lateral diversion in the rocks above the potential repository. It was determined that lateral diversion is a small-scale process in this natural system. On the basis of analyses performed in this study, it is suggested that large-scale diversion is not likely to occur at this site. This mechanism should not, therefore, be relied upon to perform as a natural hydraulic barrier to flow reducing percolation through the unsaturated zone. / Graduation date: 2002

Page generated in 0.0622 seconds