• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 372
  • 42
  • 10
  • 8
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 491
  • 491
  • 87
  • 60
  • 50
  • 50
  • 47
  • 39
  • 33
  • 31
  • 31
  • 28
  • 28
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Aperfeiçoamento do método de elementos analíticos para simulação de escoamento em rochas porosas fraturadas / Improvement of the analytical element method for simulating of flow in fractured porous rocks

Ivan Silvestre Paganini Marin 07 October 2011 (has links)
Escoamento de água subterrânea em meios porosos fraturados é um problema de grande importância, principalmente nos contextos de petróleo, energia geotérmica e repositórios geológicos. Com o aquecimento da Terra, a geração de energia com baixa emissão de gases estufa torna-se imperativa, considerando o crescimento de uso de energia e o impacto do aquecimento global. Dentre as opções disponíveis para geração de energia, a energia nuclear apresenta-se como candidata. Entretanto, dentre os riscos do uso de energia nuclear, o destino do combustível usado e de materiais provenientes de descomissionamento é um problema em aberto. Repositórios geológicos surgem como uma alternativa para a estocagem de médio e longo prazo, por serem capazes de proporcionar isolamento em escalas geológicas de tempo. O principal vetor de propagação do material radioativo estocados em repositórios é a água subterrânea, e meios fraturados estão presentes na maioria dos domínios. Fraturas podem propagar a água subterrânea e, portanto, solutos com velocidades muito maiores que as do meio poroso. Além disso, fraturas são, geralmente, sistemas multiescala, em que diferentes escalas - de centímetros a kilômetros - podem ter um papel significativo. Métodos como elementos finitos, apesar de representarem certos comportamentos do escoamento em fraturas, têm dificuldade em simular sistemas com grandes diferenças de escala, já que necessitam de discretização do domínio. O Método de Elementos Analíticos (MEA) surge como uma alternativa a esse problema, pois não necessita de discretização de domínio, podendo simular características hidrogeológicas em diferentes escalas. Este trabalho tem como proposta aperfeiçoar o MEA, desenvolvendo um elemento analítico para fraturas que interagem com o meio poroso, aplicando os desenvolvimentos recentes na teoria do Método. Baseado na Integral de Cauchy e em transformações de coordenadas, o novo formalismo de solução no plano permite maior precisão na imposição das condições de contorno, sendo aplicado para inomogeneidades circulares, inomogeneidades poligonais formadas por line doublets e para o elemento de fratura. Dificuldades numéricas na simulação para fraturas levaram ao desenvolvimento de um método matricial de solução, aplicado com sucesso para todos os elementos apresentados neste trabalho. Soluções exatas para a inomogeneidade circular e para uma fratura foram comparadas com inomogeneidades poligonais equivalentes, com sucesso. O método matricial permitiu também um estudo da convergência do método iterativo e possibilita a melhoria do Método de Elementos Analíticos em geral. / Groundwater flow in fractured porous media is a recent and modern problem, considering the petroil, geothermic energy and geologic repositories context. As the Earth warms, low \'CO IND.2\' energy generation is paramount, when the projections of energy demand and worsening of the global warming effects are factored in. Nuclear energy generation appears as one of the canditates to generate electricity with low \'CO IND.2\' emissions. Several factors must be considered, thought, when nuclear energy is concerned. The spent nuclear fueld and the decomission residues must be safely stored for long periods of time. One of the alternatives for mid and long term disposal is the use of geological repositories. Because of its characteristics, groundwater studies must be conducted to assert the safety of the repositories, as its the main contaminant vector for the stored nuclear material. Fractures must be considered in those studies, as they are usually present in almost all settings considered for repositories, and can propagate groundwater (and dissolved solutes) with very high speeds, several orders of magnitude faster than the porous media. Fractures also forms multiscale problems, where different problem scales - from centimeters to kilometers - can influence the behavior of the groundwater flow and the consequent solute transport. The usual groundwater simulation methods, even when capable of including fracture phenomena, have problems with the scale differences, as they usually depend on domain discretization. The Analytic Element Method is based on analytic solutions of the groundwater governing equations and does not depend on domain discretization, being able to tackle multiscale problems that the other methods cant produce a feasible solution. The Analytic Element Method has been developed in recent years and has been applied in different fields, as wellhead protection area delineation. This work proposes to improve the Analytic Elemento Method developing an analytic element for flow in fractures, using the recent developments as the direct use of Cauchy Integrals in the plane. These new developments allow increased precision on the numerical boundary conditions matching. This method is applied on circular inhomogeneities, polygonal inhomogeneities modelled by line doublets and the fracture element. Numerical problems in the boundary condition matching for the fractures led to the development of matrix solution method, used on all elements presented in this work. Exact solutions for one circular inhomogeneity and for one fracture allowed comparison with the numerical ones, with satisfactory results. The matrix method also permitted a convergence study of the iterative methods, possibilitating for the general improvement of the Analytic Element Method.
362

Modellering och analys av grundvattenflödet i en byggnads grundläggning / Modelling and Analysis of the Groundwater Flow below a Construction’s Foundation

Hargelius, Malcolm January 2018 (has links)
På en fastighet i Luthagen i Uppsala uppfördes en byggnad grundlagd på träpålar år 1936. Under 60-talet uppstod läckage på en spillvattenledning vilket ledde till en kontaminering av sprickvattenakviferen där träpålar är särskilt utsatta för påverkan av bakterie, svamp- och virusangrepp till följd av torrläggning. För att spola bort kontaminerat sprickvatten och för att hålla en jämn sprickvattennivå i akviferen installerades påfyllningsbrunnar på två platser i källaren under huset. Brunnarna är driva ner i de pålrännor där träpålarna är slagna. Den normala vattentillförseln låg under flera decennier på runt 10 m3/år och vattennivåerna övervakades av bostadsföreningens fastighetstjänst med regelbundna observationer av sprickvattennivån. Under hösten 2016 skedde ett trendbrott och förbrukningen av dricksvattenpåfyllning på över 10 m3/dygn uppmättes. Vattenförbrukningen fortsatte att öka och var vid vissa perioder uppe på nästan 20 m3/dygn. Bjerking AB fick då i uppdrag att undersöka orsaken till den ökade vattenförbrukningen och var vattnet tog vägen. I samband med upptäckten av den ökande vattenförbrukningen skedde även ett brott på en kommunal vattenledning i Kyrkogårdsgatan. Akviferen antogs vara i princip tät och borde inte haft någon hydraulisk kontakt med det vattenförande moränlagret under leran. Syftet med följande rapport är att undersöka de flöden som sprickvattnet har och försöka bestämma den förhärskande flödesriktningen. Den frågeställning som valts är baserad på möjligheten att modellera flödet i grundvattenmodelleringsprogrammet GMS-MODFLOW. Frågeställningen är följande För att sedan kunna modellera grundvattenflödet användes parameter estimation (PEST) som utgår från det framkalibrerade initialt grundvattenförhållandet. Där efter bestäms ett antal zoner som programmet sedan beräknar fram den hydrauliska konduktiviteten för respektive zon. Modelleringen med PEST gav resultat som visar på höga hydrauliska konduktiviteter i husets sydvästra kortsida. Den transienta modelleringen utfördes genom att de observerade vattennivåerna som mätts upp under avstängningsförsöket jämfördes med beräknade värden som fåtts genom modellen. Resultaten visade då på att be beräknade vattennivåerna till viss del stämmde över ens med de observerade, även om de var förskjuta från varandra med nästan 0,6 meter. Denna skillnad berodde antagligen på det gränsvärde som satts för randvillkoret i modellen på 7,25. Vilket gjorde att inga vattennivåer kunde bli högra än detta, vilket som tolkades som att det förekom trösklar i rännorna. Dessa resultat stämmer överens med den hypotes som antogs före projektstarten och innebar att den mest troliga flödesriktningen skulle vara åt sydväst och husets kortsida. Att resultaten bevisar antagandet säger att modellen som byggdes är mer eller mindre rättvisande. Det är dock mycket osäkerheter i modellen och de ingångsvärden som använts. Bland annat är materialtyperna som finns i modellen enbart antagna och det har inte gjorts några bestämningar av markens hydrauliska egenskaper. Andra möjliga fel som kan ha påverkat resultaten är de skalningsproblem som finns i MODFLOW. Slutsatsen är att det är möjligt att göra denna typ av ”småskalig” flödesmodellering i MODFLOW och att förhärskande flödesriktningen är åt sydväst och husets kortsida. / Most of Sweden’s older buildings constructed in clay rich areas are founded on wood poles. The poles are used to build the constructions in areas with soils without satisfying stability, such e.g. clay soils, where the poles are used as the “stable ground” where the building are founded upon. One of the problems with wood poles are that to prevent the wood from rotting the poles must be covered with water, to make an oxygen free environment. The problems start first when the water levels start to decrease due to dewatering or if the water is contaminated with bacteria from e.g. leaky sewer pipes. The contamination leads to decomposing of the wood, which affect the stability of the poles negatively. To prevent the leaky aquifers many houses, have water supply by wells where water is added to the aquifer to keep the water at stable levels. In Uppsala, Sweden an apartment building founded on wood poles have this problems with a contaminated and leaky aquifer. The reason to the contamination was an old sewer pipe that start leaking due to subsidence of the clay below the house. The dewatering of the aquifer was detected in 2016 when the water supply to the aquifer increased from 10th of cubic meters per year to 10th of cubic meters per day. In an attempt to find out what the reason to the high discharge from the aquifer a groundwater model was constructed to modelling the groundwater flows below the building. To modeling this problem the software Groundwater Modeling System (GMS) and MODFLOW was used. By construct a 3D grid of cells in the same dimensions as the building divided in to three different layers it was possible to simulating the groundwater flow through the aquifer. The way we did it was by knowing that as part of the foundation there was “channels” filled with gavel above the poles. The hypothesis was that the water was flowing through this high hydraulic conductivity “gravel channels” and there for we used the model to performed calculations of the hydraulic conductivity in the channels and the areas around the channels. The results told us that there were high conductivity zones in the south west part of the building. After the calculation of the conductivity, a test was performed, where the water supply where turned off and the decrease of the water levels was measured. By using this calculated hydraulic conductivity and the observed levels from the water supply test we let the model calculate the change of water level during the whole-time series. The results told us that there was a possible groundwater flow to the sought west and that some sort of threshold in the channel prevented the water to sink below a curtain limit of 7.65 meter.
363

The Dynamics of Groundwater Flow and Salinity Transport in Unconfined Coastal Aquifers / 海岸不圧帯水層における地下水流動と塩分輸送過程に関する研究

Kriyo, Sambodho 25 January 2010 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第15034号 / 工博第3183号 / 新制||工||1479(附属図書館) / 27495 / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 関口 秀雄, 教授 間瀬 肇, 教授 後藤 仁志 / 学位規則第4条第1項該当
364

Assessment of sustainable groundwater utilization with case studies from semi-arid Namibia

Sarma, Diganta January 2016 (has links)
Philosophiae Doctor - PhD / The thesis addresses sustainability of groundwater utilization in arid and semiarid regions of Namibia. Recharge in this hydrogeological setting occurs as discrete events to aquifers that are bounded in extent. Case studies involving fractured hardrock and alluvial aquifers with aquifer-ephemeral river interaction were considered. The nature of recharge to arid region bounded aquifers was explored. In arid region aquifers, roundwater storage is depleted during extended dry periods due to pumping and natural discharge. Steady state conditions are rarely achieved. With lowering of the water table, evapotranspiration is reduced thus decreasing aquifer discharge. However, depletion of ephemeral river flow is the primary source of water to boreholes. Physical constraints such as river bed and aquifer hydraulic properties set a limit to the degree of natural replenishment possible during flow events. An approach to assessing sustainable yield of a fractured rock aquifer associated with ephemeral river flow is discussed using a case study from rural semi-arid Namibia. Limited data required the simulation results to be verified against geological and hydrogeological constraints. The aquifer’s gain in storage is estimated through numerical simulation. It provides a basis for groundwater scheme management that rely on limited data in semi-arid conditions in sub-Saharan Africa. Aspects related to ephemeral river flow and groundwater recharge to strip alluvial aquifers was addressed in the second case study. The processes controlling infiltration, significance of surface water and groundwater losses, and possible artificial recharge options were investigated through numerical simulation. It was concluded that recharge processes in arid alluvial aquifers differ significantly from those in humid systems. Conjunctive use of surface and groundwater resources require artificial augmentation of aquifer recharge due to constrains in natural infiltration rates. The study provides a reference for sustainable management of alluvial aquifer systems in similar regions. It is seen from the study that high rates of groundwater exploitation deplete surface water resources needed downstream while failure to capture surface flow during flood events cause loss of potential recharge. It is concluded that as water demand in Namibia increases, basin wide combined surface water and groundwater resource evaluation and management have become a necessity.
365

Investigation of stream-aquifer interactions using a coupled surface water and groundwater flow model.

Vionnet, Leticia Beatriz, Vionnet, Leticia Beatriz January 1995 (has links)
A finite element numerical model is developed for the modeling of coupled surface-water flow and ground-water flow. The mathematical treatment of subsurface flows follows the confined aquifer theory or the classical Dupuit approximation for unconfined aquifers whereas surface-water flows are treated with the kinematic wave approximation for open channel flow. A detailed discussion of the standard approaches to represent the coupling term is provided. In this work, a mathematical expression similar to Ohm's law is used to simulate the interacting term between the two major hydrological components. Contrary to the standard approach, the coupling term is incorporated through a boundary flux integral that arises naturally in the weak form of the governing equations rather than through a source term. It is found that in some cases, a branch cut needs to be introduced along the internal boundary representing the stream in order to define a simply connected domain, which is an essential requirement in the derivation of the weak form of the ground-water flow equation. The fast time scale characteristic of surface-water flows and the slow time scale characteristic of ground-water flows are clearly established, leading to the definition of three dimensionless parameters, namely, a Peclet number that inherits the disparity between both time scales, a flow number that relates the pumping rate and the streamflow, and a Biot number that relates the conductance at the river-aquifer interface to the aquifer conductance. The model, implemented in the Bill Williams River Basin, reproduces the observed streamflow patterns and the ground-water flow patterns. Fairly good results are obtained using multiple time steps in the simulation process.
366

Diverging flow tracer tests in fractured granite: equipment design and data collection

Barackman, Martin Lee, 1953-, Barackman, Martin Lee, 1953- January 1986 (has links)
Down-hole injection and sampling equipment was designed and constructed in order to perform diverging-flow tracer tests. The tests were conducted at a field site about 8 km southeast of Oracle, Arizona, as part of a project sponsored by the U. S. Nuclear Regulatory Commission to study mass transport of fluids in saturated, fractured granite. The tracer injection system was designed to provide a steady flow of water or tracer solution to a packed off interval of the borehole and allow for monitoring of down-hole tracer concentration and pressure in the injection interval. The sampling system was designed to collect small volume samples from multiple points in an adjacent borehole. Field operation of the equipment demonstrated the importance of prior knowledge of the location of interconnecting fractures before tracer testing and the need for down-hole mixing of the tracer solution in the injection interval. The field tests were designed to provide data that could me analyzed to provide estimates of dispersivity and porosity of the fractured rock. Although analysis of the data is beyond the scope of this thesis, the detailed data are presented in four appendices.
367

Towards understanding the groundwater dependent ecosystems within the Table Mountain Group Aquifer: a conceptual approach

Sigonyela, Vuyolwethu January 2006 (has links)
Magister Scientiae - MSc / Understanding of Groundwater Dependent Ecosystems (GDEs) and their extent within the Table Mountain Group (TMG) aquifer is poor. To understand the dependence to basic ecological and hydrogeological concepts need explanation. The use of current literature aided in identification and classification. From the literature it has come clear that groundwater dependence centers around two issues, water source and water use determination. The use of Geographical Information System (GIS) showed its potential in proof of water sources. Rainfall data and a Digital Elevation Model (DEM) for the Uniondale area have been used to do watershed delineation, which is in line with locating GDEs on a landscape. Thus the conceptual approach should be a broad one that sets a basis for both investigation (scientific research) and institutional arrangements (management). / South Africa
368

A preliminary understanding of deep groundwater flow in the Table Mountain group (TMG) aquifer system

Netili, Khangweleni Fortress January 2007 (has links)
Magister Scientiae - MSc / The Table Mountain Group (TMG) Aquifer is the second largest aquifer system in South Africa, after dolomites. This aquifer has the potential to be a signinficant source of water for the people of the Western Cape. The occurrence of hot water springs in the TMG in relation with the main geological fault systems in SOuth Africa shows that deep flow systmes do exist. Little is known about these deep aquifer systems in South Africa (i.e. flow mechanisms). To close the above-mentioned knowledge gap, this study was initiated. The current study gave a review of some of the aspects that needs to be considered when distinguishing deep groundwater from shallow groundwater. / South Africa
369

Implications of the geological structure of the Qoqodala dolerite ring complex for groundwater dynamics

Nhleko, Olivia Lebogang January 2008 (has links)
Magister Scientiae - MSc / The chief aim of this project is to investigate the groundwater flow dynamics of the various fractured-rock aquifers (deep and shallow) associated with Karoo dolerite ring complexes in the Qoqodala area (northeast of Queenstown in the Eastern Cape Province). / South Africa
370

Evaluation of groundwater flow theories and aquifer parameters estimation

Xiao, Liang January 2014 (has links)
Philosophiae Doctor - PhD / This thesis deals with some fundamental aspects of groundwater models. Deterministic mathematical models of groundwater are usually used to simulate flow and transport processes in aquifer systems by means of partial differential equations. Analytical solutions for the deterministic mathematical models of the Theis problem and the transient confined-unconfined flow in a confined aquifer are investigated in the thesis. The Theis equation is a most commonly applied solution for the deterministic mathematical model of the Theis problem. In the thesis, a most simplified similarity transformation method for derivation of the Theis equation is proposed by using the Boltzmann transform. To investigate the transient confined-unconfined flow towards a fully penetrating well in a confined aquifer, a new analytical solution for the deterministic mathematical models of interest is proposed in the thesis. The proposed analytical solution considers a change of hydraulic properties (transmissivity and storativity) during the confined-unconfined conversion. Based on the proposed analytical solution, a practical method to determine distance of the conversion interface from pumping well and diffusivity of the unconfined region is developed by using a constant rate test. Applicability of the proposed analytical solution is demonstrated by a comparison with previous solutions, namely the MP and the Chen models. The results show that the proposed analytical solution can be used to assess the effect of the change of diffusivity on the transient confined-unconfined flow. The MP model is only accepted if the transmissivity during the confined-unconfined conversion is constant. The Chen model, given as a special case of the proposed analytical solution, is limited to the analysis of the transient confined-unconfined flow with a fixed diffusivity. An important application of groundwater models is to estimate parameters, such as hydraulic properties and flow dynamics, of groundwater systems by assessing and analysing field data. For instance, the pumping and the hydrochemistry and environmental tracer tests are two effective ways to obtain such data. To evaluate hydraulic properties of aquifer systems by derivative interpretation of drawdown data from pumping tests, a new diagnostic analysis method is proposed based on a lg-lg drawdown derivative, dlgs/dlgt, and the differentiation algorithm namely Lagrange Interpolation Regression (LIR) in the thesis. Use of a combined plot of dlgs/dlgt and a semi-lg drawdown derivative (ds/dlgt) is made to identify various flow segments during variable discharge tests with infinite conditions, constant rate tests in bounded aquifers and tests involving double-porosity behaviours. These can be applied to further characterize pumped aquifers. Compared to traditional diagnostic analysis method using plot of ds/dlgt alone, the combined drawdown derivative plot possesses certain advantages identified as: (1) the plot of dlgs/dlgt is strikingly sensitive for use in unveiling differences between pumping and its following recovery periods in intermittent variable discharge tests; (2) storativity (S) of pumped aquifers can be evaluated by using the combined plot; and (3) quantitative assessments of double-porosity behaviours can also be achieved. Based on two case studies, advantages and disadvantages of uses of the LIR and other existing differentiation methods in calculations of numerical drawdown derivative are demonstrated in practice. The results suggest that the LIR is a preferred method for numerical differentiation of drawdown data as it can be used to effectively minimise noisy effects. The proposed derivative approach provides hydrologists with an additional tool for characterizing pumped aquifers. Use of hydrochemistry and environmental tracer tests to assess flow dynamics of groundwater systems is demonstrated via a case study in the dolomite aquifer of South Africa. An emphasis is on determining mean residence times (MRTs) of the dolomite aquifer by means of an appropriate box model with time series of 14C values of dissolved inorganic carbon (14C-DIC) and initial 14C activities of spring samples during 1970s and 2010s. To obtain the calibrated 14C MRTs, 13C values of dissolved inorganic carbon (δ13C-DIC) of the spring samples are applied to estimate mineral dissolution in the dolomite aquifer and calculate the initial 14C activities. The results indicate that the spring samples have about 50%-80% initial 14C activities. By using the appropriate box model, the calibrated 14C MRTs of the spring system are given within a range from ≤ 10 to 50 years. Additionally, the flow dynamics, including the recharge source and area, the effect of climate change on the temporal trend of the groundwater MRTs and the groundwater flow circulation, of the dolomitic spring system are also discussed for further possible management interventions in the dolomite aquifer.

Page generated in 0.1149 seconds