Spelling suggestions: "subject:"group rings."" "subject:"croup rings.""
31 |
Códigos cíclicos sobre anéis de cadeia / Cyclic codes over chain ringsAnderson Tiago da Silva 05 March 2012 (has links)
Neste trabalho, usamos uma abordagem de anéis de grupo para caracterizar códigos cíclicos sobre anéis de cadeia, seus duais e algumas condições sobre códigos auto-duais. Caracterizamos também os códigos cíclicos livres sobre anéis de cadeia e por fim exibimos uma fórmula para o peso de qualquer código cíclico sobre anéis de cadeia de comprimento e p^n 2p^n. / In this thesis, we use an approach of group rings to characterize cyclic codes over chain rings, their duals and some conditions on self-dual codes. It also features free cyclic codes over chain rings and finally we show a formula for the weight of any cyclic code over chain rings of length p^n and 2p^n.
|
32 |
A importância das unidades centrais em anéis de grupo / The importance of central units in group ringsAntonio Calixto de Souza Filho 14 December 2000 (has links)
Na presente dissertação, discutimos o Problema do Isomorfismo em anéis de grupo para grupos infinitos da forma G × C, apresentado no artigo de Mazur [14], que enuncia um teorema mostrando a equivalência para o Problema do Isomorfismo entre essa classe de grupos infinitos e grupos finitos que satisfaçam a Conjectura do Normalizador. Nossa ênfase concentra-se na relação entre a Conjectura do Isomorfismo e a Conjectura do Normalizador, primeiramente, observada nesse artigo. Em seguida, consideramos um teorema de estrutura para as unidades centrais em anéis de grupo comunicado, pela primeira vez, no artigo de Jespers-Parmenter-Sehgal [9], e generalizado por Polcino Milies-Sehgal em [17], e Jespers-Juriaans em [7]. Evidenciamos a importância desse teorema para a Teoria de Anéis de Grupo e apresentamos uma nova demonstração para o teorema de equivalência de Mazur, considerando, para tanto, uma apropriada unidade central e sua estrutura, caracterizada pelo teorema comunicado para as unidades centrais. Concluímos a dissertação, descrevendo a construção do grupo das unidades centrais para o anel de grupo ZA5 , um grupo livre finitamente gerado de posto 1, utilizando a construção dada no artigo de Aleev [1]. / In this dissertation, we discuss the Problem of the Isomorphism in group rings for infinite groups as G × C. This is presented in [14]. Such article states a theorem which shows an equivalence to the isomorphism problem between that infinite class group and finite groups verifying the Normalizer Conjecture. Our main purpose is the Normalizer Conjecture and the Isomorphism Conjecture relationship remarked in the cited article to the groups above. Following, we consider a group ring theorem to the central units subgroup firstly communicated in [9] and generalized in [17] and [7]. We point up the importance of such theorem to the Group Ring Theory and we give a short and a new demonstration to Mazurs equivalence theorem from using a suitable central unit altogether with its structure lightly by the Central Unit Theorem on focus. We conclude this work sketching the ZA5 central units subgroup on showing it is a free finitely generated group of rank 1 from the presenting construction in Aleevs article [1].
|
33 |
Códigos de peso constante / One weight codesNascimento, Ruth 09 June 2014 (has links)
Sejam F_q um corpo finito com q elementos, e C_n um grupo cíclico de n elementos com mdc(q,n) = 1. Iniciamos nosso trabalho inspirados nos resultados de Vega, estabelecendo condições para que um código de F_qC_n tenha peso constante. Com tal resultado concluímos que um código de peso constante em F_qC_n é da forma {rg^ie | r em F_q, i variando de 0 a n}. A partir disto, determinamos a quantidade de códigos de peso constante de F_qC_n, e construímos exemplos de códigos de dois pesos em F_q(C_n X C_n). Em seguida, estabelecemos sob quais condições um código em F_qA, para A um grupo abeliano finito, tem peso constante. Analisamos também os códigos de peso constante em RG, quando R um anel de cadeia finito e C_n é um grupo cíclico de n elementos com mdc(n,q) = 1. Além disso, analisamos o caso em que os elementos de um ideal de RA, para R um domínio de integridade infinito e A um grupo abeliano finito têm peso constante. / Let F_q be a field with q elements, C_n be a cyclic group of order n and suppose that gcd(q,n) = 1. In this work conditions are given to ensure that a code in F_qC_n is a one weight code, inspired in the work of Vega. As a consequence of this result we showed that a one weight code in F_qC_n is of the form {rg^ie | r in F_q, i between 0 and n}. With this, we determined the number of one weight codes in F_qC_n, and constructed examples of two weight codes in F_q(C_n X C_n). After this, we gave conditions to ensure that a code had constant weight in F_qA, for A a finite abelian group. We also analyzed the one weight codes in RG, R a chain ring and C_n a cyclic group with n elements with gcd(n,q) = 1. Moreover, we analyzed the case when the elements of an ideal in RA, for R an infinite integral domain and A a finite abelian group, have constant weight.
|
34 |
Códigos de peso constante / One weight codesRuth Nascimento 09 June 2014 (has links)
Sejam F_q um corpo finito com q elementos, e C_n um grupo cíclico de n elementos com mdc(q,n) = 1. Iniciamos nosso trabalho inspirados nos resultados de Vega, estabelecendo condições para que um código de F_qC_n tenha peso constante. Com tal resultado concluímos que um código de peso constante em F_qC_n é da forma {rg^ie | r em F_q, i variando de 0 a n}. A partir disto, determinamos a quantidade de códigos de peso constante de F_qC_n, e construímos exemplos de códigos de dois pesos em F_q(C_n X C_n). Em seguida, estabelecemos sob quais condições um código em F_qA, para A um grupo abeliano finito, tem peso constante. Analisamos também os códigos de peso constante em RG, quando R um anel de cadeia finito e C_n é um grupo cíclico de n elementos com mdc(n,q) = 1. Além disso, analisamos o caso em que os elementos de um ideal de RA, para R um domínio de integridade infinito e A um grupo abeliano finito têm peso constante. / Let F_q be a field with q elements, C_n be a cyclic group of order n and suppose that gcd(q,n) = 1. In this work conditions are given to ensure that a code in F_qC_n is a one weight code, inspired in the work of Vega. As a consequence of this result we showed that a one weight code in F_qC_n is of the form {rg^ie | r in F_q, i between 0 and n}. With this, we determined the number of one weight codes in F_qC_n, and constructed examples of two weight codes in F_q(C_n X C_n). After this, we gave conditions to ensure that a code had constant weight in F_qA, for A a finite abelian group. We also analyzed the one weight codes in RG, R a chain ring and C_n a cyclic group with n elements with gcd(n,q) = 1. Moreover, we analyzed the case when the elements of an ideal in RA, for R an infinite integral domain and A a finite abelian group, have constant weight.
|
35 |
Construções de reticulados via extensões cíclicas de grau ímpar /Oliveira, Everton Luiz de. January 2011 (has links)
Orientador: Antonio Aparecido de Andrade / Banca: Edson Donizete de Carvalho / Banca: Clotilzio Moreira dos Santos / Resumo: Neste trabalho, descrevemos cíclicas de reticulados algébricos Zn-rotacionados de dimensão ímpar. Essas construções são obtidas através da imersão Rn, via homomorfismo canônico, de determinados Z-módulos livres de posto finito contidos em subcorpos de extensões ciclotômicas do tipo Q(ζp), Q(ζp2), Q(ζpq)e Q(ζpq2), com p e q primos ímpares. Caracterizamos os reticulados e apresentamos propriedades e aplicações na Teoria da Informação. / Abstract: In this work we describe cyclic constructions of odd dimension. These constructions are obtained by immersion in Rn via the canonical homomorphism, of certain Z-free modules of finite rank contained in subfield cyclotomic extensions of type Q(ζp), Q(ζp2), Q(ζpq)e Q(ζpq2), com p e q odd prime. Featuring the obtained lattices and presenting properties and applications in Information Theory. / Mestre
|
36 |
Význačné prvky grupových okruhů / Distinguished elements of group ringsProcházková, Zuzana January 2021 (has links)
Title: Distinguished elements of group rings Author: Bc. Zuzana Procházková Department: Department of Algebra Supervisor: doc. Mgr. et Mgr. Jan Žemlička, Ph.D., Department of Algebra Abstract: This thesis is about finding idempotents in a group ring. We describe three techniques of finding idempotents in a semisimple group ring and in the last chapter there is an attempt to find idempotents in a group ring that does not have to be semisimple. The first technique uses representations and characters of a group. The second technique finds idempotents through the use of Shoda pairs. The third technique lifts idempotent from the factor ring with the help of CNC system of ideals, which is a generalization of a well-known technique with nilpotent ideals, and it is here extended to group rings formed by non-abelian group and noncommutative ring. iii
|
Page generated in 0.0813 seconds