• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Extensions entre séries principales p-adiques et modulo p d'un groupe réductif p-adique déployé / Extensions between p-adic and mod p principal series of a split p-adic reductive group

Hauseux, Julien 11 December 2014 (has links)
Cette thèse est une contribution à l'étude des représentations p-adiques (c'est-à-dire continues unitaires sur des espaces de Banach p-adiques) et modulo p (c'est-à-dire lisses sur un corps fini de caractéristique p) d'un groupe réductif p-adique déployé G.Nous déterminons les extensions entre séries principales p-adiques et modulo p de G Pour cela, nous calculons le delta-foncteur H•OrdB des parties ordinaires dérivées d'Emerton relatif à un sous-groupe de Borel sur une série principale en utilisant une filtration de Bruhat.Nous déterminons également les extensions d'une série principale par une représentation ordinaire (c'est-à-dire obtenue par induction parabolique à partir d'une représentation spéciale du Levi tordue par un caractère), ainsi que les extensions de Yoneda de longueur supérieure entre séries principales modulo p sous une conjecture d'Emerton vraie pour GL2.Nous montrons de plus qu'il n'existe pas de « chaîne » de trois séries principales p-adiques ou modulo p distinctes de G. Pour cela, nous calculons partiellement le delta-foncteur H•OrdP relatif à un sous-groupe parabolique quelconque sur une série principale. En exploitant ce résultat, nous prouvons une conjecture de Breuil et Herzig sur l'unicité de certaines représentations p-adiques de G dont les constituants sont des séries principales, ainsi que son analogue modulo p.Enfin, nous énonçons une nouvelle conjecture sur les extensions entre représentations modulo p irréductibles de G obtenues par induction parabolique à partir d'une représentations supersingulière du Levi. Nous prouvons cette conjecture pour les extensions par une série principale. / This thesis is a contribution to the study of p-adic (i.e. unitary continuous on p-adic Banach spaces) and mod p (i.e. smooth over a finite field of characteristic p) representations of a split p-adic reductive group G.We determine the extensions between p-adic and mod p principal series of G. In order to do so, we compute Emerton's delta-functor H•OrdB of derived ordinary parts with respect to a Borel subgroup on a principal series using a Bruhat filtration.We also determine the extensions of a principal series by an ordinary representation (i.e. parabolically induced from a special representation of the Levi twisted by a character), as well as the Yoneda extensions of higher length between mod p principal series under a conjecture of Emerton true for GL2.Moreover, we show that there exists no “chain” of three distinct p-adic or mod p principal series of G. In order to do so, we partially compute the delta-functor H•OrdP with respect to any parabolic subgroup on a principal series. Exploiting this result, we prove a conjecture of Breuil and Herzig on the uniqueness of certain p-adic representations of G whose constituents are principal series, as well as its mod p analogue.Finally, we formulate a new conjecture on the extensions between irreducible mod p representations of G parabolically induced from a supersingular representation of the Levi. We prove this conjecture for extensions by a principal series.
2

Cohomologie d'espaces fibrés au-dessus de l'immeuble affine de GL(N) / Cohomology of fiber spaces over the affine building of GL(N)

Rajhi, Anis 01 October 2014 (has links)
Cette thèse se compose de deux parties : dans la première on donne une généralisation d'espaces fibrés construit au-dessus de l'arbre de Bruhat-Tits du groupe GL(2) sur un corps p-adique. Plus précisément, on a construit une tour projective d'espaces fibrés au-dessus du 1-squelette de l'immeuble de Bruhat-Tits de GL(n) sur un corps p-adique. On a montré que toute représentation cuspidale π de GL(n) se plonge avec multiplicité 1 dans le premier espace de cohomologie à support compact du k-ième étage de la tour, où k est le conducteur de π. Dans la deuxième partie on a construit un espace W au-dessus de la subdivision barycentrique de l'immeuble de Bruhat-Tits de GL(n) sur un corps p-adique. Pour étudier les espaces de cohomologie à support compact d'un G-complexe simplicial propre X muni d'un recouvrement équivariant assez particulier, où G est un groupe localement compact totalement discontinu, on a montré l'existence d'une suite spactrale dans la catégorie des représentations lisses de G qui converge vers la cohomologie à support compact de X. En s'appuyant sur ce dernier résultat, on a calculé la cohomologie à support compact de l'espace W comme représentation lisse de GL(n) puis on a montrer que les types cuspidaux de niveau 0 de GL(n) apparaissent avec multiplicité fini dans la cohomologie de certain complexes fini construit au niveau résiduel. Comme conséquence, on montre que les représentations cuspidales de niveau 0 de GL(n) apparaissent dans la cohomologie de W. / This thesis consists of two parts: the first one gives a generalization of fiber spaces constructed above the Bruhat-Tits tree of the group GL(2) over a p-adic field. More precisely we construct a projective tower of spaces over the 1-skeleton of the Bruhat-Tits building of GL(n) over a p-adic field. We show that any cuspidal representation π of GL(n) embeds with multiplicity 1 in the first cohomology space with compact support of k-th floor of the tower, where k is the conductor of π. In the second part we constructed a space W above the barycentric subdivision of the Bruhat-Tits building of GL(n) over a p-adic field. To study the cohomology spaces with compact support of a proper G-simplicial complex X with a rather special equivariant covering, where G is a totally disconnected locally compact group, we show the existence of a spactrale sequence in the category of smooth representations of G that converges to the cohomology with compact support of X. Based on the latter results, we calculate the cohomology with compact support of W as smooth representation of GL(n), and then we show that the level zero cuspidal types of GL(n) appear with finite multiplicity in the cohomology of some finite simplicial complexes constructed in residual level. As a consequence, we show that the cuspidal representations of level 0 of GL(n) appear in the cohomology of W.

Page generated in 0.0715 seconds