• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Théorie des modèles des groupes abéliens valués / Model theory of Abelian valued groups

Guignot, Francois 09 November 2016 (has links)
Cette thèse est consacrée à la théorie des modèles des groupes abéliens valués. Nousdonnons à la fin du premier chapitre un exemple assez simple montrant qu’au contrairedes groupes abéliens ordonnés, les groupes abéliens valués ne sont pas tous dépendants(NIP). La question de la propriété d’indépendance est d’ailleurs au coeur du manuscrit.Nous travaillons dans un langage à deux sortes constitué de symboles pour : la loi de groupe,le symétrique et l’élément neutre (sorte du groupe), l’ordre sur la chaîne et l’infini (sortede la chaîne de valuation) et enfin la valuation elle-même. La première partie (chapitres 2,3 et 4) traite le cas du groupe additif Z des entiers relatifs muni d’une valuation p-adique(avec p premier) et de la théorie commune à ces structures. Dans chaque cas, on obtientune axiomatisation et une élimination des quanteurs dans un langage un peu enrichi, lecaractère NIP est démontré et une étude succincte des types définissables est proposée.La deuxième partie commence par le seul chapitre généraliste du texte, où l’on adapte lapp-élimination des quantificateurs dans les modules au cadre des groupes abéliens valués.Le chapitre 6 s’intéresse aux groupes valués à chaîne finie construits sur Z : on y axiomatiseleur théorie commune et les complétions de celle-ci, pour lesquelles on donne également uneélimination des quanteurs. Enfin, le chapitre 7 s’appuie sur les résultats des chapitres 5 et 6pour fournir une élimination des quantificateurs dans le cas d’un groupe valué quelconqueconstruit sur Z et pour en déduire le caractère NIP. / The purpose of this thesis is to study model theory of abelian valued groups. At theend of the first chapter, a basic example is given, showing that, in sharp contrast to orderedabelian groups, abelian valued groups may not be dependent (NIP). The topic of IndependenceProperty is focused on throughout the manuscript. The language used is two-sortedand contains symbols for : the group operation, the inverse and the identity element (sortof the group), the order on the chain and the infinity (sort of the value chain) and finallythe valuation itself. The first part (chapters 2, 3 and 4) deals with the case of the additivegroup Z of integers endowed with a p-adic valuation (with p a prime number) and withthe common theory to these structures. In each case, an axiomatization and a quantifierelimination in a language a bit larger are obtained, the lack of the Independence Propertyis proven and a short study of definable types is propounded. The second part begins withthe only general chapter of the work, where the pp-elimination of quantifiers for modules isadapted to the framework of valued abelian groups. The chapter 6 aims at studying valuedgroups with finite chains, with Z as the underlying group : their common theory and itscompletions, for which a quantifier elimination result is also given, are axiomatized. Finally,the chapter 7, based upon the results of chapters 5 and 6, gives a quantifier eliminationfor any valued group having Z as the underlying group and deduces from this the fact thatthese valued groups are NIP.
2

Chaînes et dépendance

De Aldama Sánchez, Ricardo 18 December 2009 (has links) (PDF)
Le cadre général de cette thèse est celui de la propriété d'indépendance en théorie des modèles. Les théories sans cette propriété sont appelées NIP ou dépendantes. L'objectif principal est de trouver de nouveaux exemples de théories appartenant à cette classe. Nous montrons d'abord un résultat isolé qui répond une question de Pillay : dans un groupe NIP possédant une partie infinie de classe de nilpotence finie, on y trouve un sous-groupe définissable de même classe de nilpotence et contenant cette partie infinie. Le reste de la thèse est motivé par deux cadres extrêmement proches : les groupes abéliens munis d'une chaîne de sous-groupes uniformément définissables, et les groupes abéliens valués. Dans le premier cas nous identifions une certaine théorie et nous étudions plusieurs extensions de cette théorie. Nous prouvons une élimination des quantificateurs dans chacune des ses extensions, grâce à laquelle la NIP en découle facilement. Le dernier résultat est le plus substantiel. Nous montrons qu'une théorie naturelle de chaîne colorée munie quasi-automorphismes n'a pas la propriété d'indépendance. Nous appliquons ensuite ce résultat à une certaine théorie de groupes valués, étudiée par Simonetta dans le contexte des groupes C-minimaux, pour en conclure qu'elle est NIP. Nous montrons aussi d'une façon assez directe (en utilisant des résultats de Rubin et Poizat) qu'une chaîne colorée munie d'automorphismes est NIP.
3

Chaînes et dépendance / Linear orders and dependence

De aldama sánchez, Ricardo 18 December 2009 (has links)
Le cadre général de cette thèse est celui de la propriété d’indépendance en théorie des modèles. Les théories sans cette propriété sont appelées NIP ou dépendantes. L’objectif principal est de trouver de nouveaux exemples de théories appartenant à cette classe. Nous montrons d’abord un résultat isolé qui répond une question de Pillay : dans un groupe NIP possédant une partie infinie de classe de nilpotence finie, on y trouve un sous-groupe définissable de même classe de nilpotence et contenant cette partie infinie. Le reste de la thèse est motivé par deux cadres extrêmement proches : les groupes abéliens munis d’une chaîne de sous-groupes uniformément définissables, et les groupes abéliens valués. Dans le premier cas nous identifions une certaine théorie et nous étudions plusieurs extensions de cette théorie. Nous prouvons une élimination des quantificateurs dans chacune des ses extensions, grâce à laquelle la NIP en découle facilement. Le dernier résultat est le plus substantiel. Nous montrons qu’une théorie naturelle de chaîne colorée munie quasi-automorphismes n’a pas la propriété d’indépendance. Nous appliquons ensuite ce résultat à une certaine théorie de groupes valués, étudiée par Simonetta dans le contexte des groupes C-minimaux, pour en conclure qu’elle est NIP. Nous montrons aussi d’une façon assez directe (en utilisant des résultats de Rubin et Poizat) qu’une chaîne colorée munie d’automorphismes est NIP. / This PhD thesis is in the general area of the independence property in model theory.Theories without this property are called NIP or dependent. The main objective of this thesis is to find new examples belonging to this class. Firstly, we prove an isolated result that answers a question stated by Pillay : if a NIP group contains an infinite set of finite nilpotency class, then there exists a definable subgroup of the same nilpotency class containing this set. The rest of this thesis is motivated by two extremely closed related contexts : abelian groups equipped with an uniformly definable chain of subgroups, and valued groups. In the first case we identify a theory and study several extensions of it. We prove quantifier elimination in each of these extensions, and use it to easily conclude that they are NIP. The last result is the most significant one. We prove that a natural theory of linear orderings equipped with quasi-automorphisms doesn’t have the independence property. Then we apply this result to a particular theory of valued abelian groups, which has been studied by Simonetta in the context of C-minimal groups, to conclude that it is NIP. We also prove in a rather straightforward way (using results by Rubin and Poizat) that a linear ordering equipped with automorphisms is NIP

Page generated in 0.0638 seconds