• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 17
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 76
  • 76
  • 70
  • 16
  • 14
  • 14
  • 12
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Determination and assessment of procedures of the pour-through nutrient extraction procedure for bedding flats and plug trays

Schweizer, Amelia Lee 31 October 2009 (has links)
A study was conducted to develop, demonstrate and assess the Pour-through nutrient extraction procedure for bedding flats and plug trays. The Pour-through technique involves pouring a prescribed volume of water on a recently irrigated medium, then collecting and analyzing the leachate to predict nutrient availability in the medium. The volume of water necessary to collect a Pour-through from a 1204 bedding flat was determined to be 5 ml per cell based on leachate pH and electrical conductivity (EC) at various volumes of water applied. Impatiens wallerana ‘Super Elfin Red’ and Tagetes erecta ‘Apollo’ were grown in 1204 bedding flats at three fertilizer concentrations to assess the overall potential of the Pour-through procedure. Analysis of leachate EC, pH, and macro- and micro-nutrients indicated that the Pour- through method of nutrient extraction was sensitive and effective in extracting available nutrients. Leachate analysis was positively correlated to fertilizer nitrogen concentration, shoot tissue dry weight, and nutrient concentrations of conventional Saturated Media Extract methods. Preliminary studies indicated that evenly applying 200 ml of water per plug tray cells produced adequate leachate (50 ml) for laboratory analysis of EC, pH, and macro- and micro-nutrients. Impatiens wallerana ‘Super Elfin Red’ and Tagetes erecta ‘Apollo’ were grown in plug trays at three fertilizer concentrations to assess the overall potential of the Pour-through procedure. Analysis of leachate EC, pH, and macro- and micro-nutrients indicated that the Pour-through method of nutrient extraction was sensitive and effective in extracting available nutrients. Pour-through leachate analysis was positively correlated to fertilizer nitrogen concentration and to whole shoot tissue. / Master of Science
32

Some aspects of litterfall and decomposition: fuel accumulation in two plant stands in Taipo Kau forest reserve,New Territories, Hong Kong

Mak, Hon-tak., 麥漢德. January 1978 (has links)
published_or_final_version / Geography and Geology / Master / Master of Philosophy
33

Investigating the performance of quality of the Cucumis metuliferus E. May. Ex Naudin (African hornes cucumber) under different growing environments for potential commercialisation

Maluleke, Mdungazi Knox 07 1900 (has links)
Text in English with abstracts in English, Tsonga and Sepedi and keywords in English / This study was carried out to investigate the performance and quality of Cucumis metuliferus E. Mey. Ex Naudin (African horned cucumber) under protected and open environment with the aim of comparing yield and quality for the purpose of commercialisation of the crop. Therefore, the overall objective was to determine a suitable growing environment for C. metuliferus between greenhouse, shade net and open field, so that a comparative yield and quality analysis could be done for the purpose of commercialisation of the crop. Cucumis metuliferus seeds are difficult to germinate under the normal suitable environmental conditions in which most farmers operate. Germination was evaluated with respect to growth medium, scarification and seed certification. These factors ultimately control yield and fruit quality. The main aim of the study was to investigate the effect or impact of seed certification, growth medium (sand and vermiculite, peat TS1 and seedling mix) and scarification on germination success of C. metuliferus seeds. The seeds were classified under four different categories viz. treated certified, non-treated certified, treated uncertified, and non-treated uncertified. Of the 540 certified and uncertified seeds sown in the three-growth media, 80% germinated, significantly more that those that failed. The treatment combination of treated certified seeds (TC) and peat demonstrated high germination success rate of 93.6%, followed by the treatment combination of treated certified seeds (TC) and sand+ vermiculite with germination success rate of 91.3%. The treatment combination of uncertified untreated (UTU) seeds and potting mix illustrated low germination success rate at 37.2%. In general, the study results revealed that certified seeds scarified with warm water combined had a higher germination rate that unscarified seeds, irrespective of the growth media. Since the seedling root-ball integrity is essential for transplant survival, this study suggests peat and certified seeds as the best combination for propagation and good quality plants. Water scarcity, population growth and climate change are the major factors affecting agricultural productivity in the 20th century. Cucumis metuliferus grows naturally in the wild; however, its yield response to water stress, different cultivation environment and soil types, has not been assessed. A study was carried out to determine water use efficiency of the C. metuliferus grown the greenhouse, shade net and open field under varying soil types and irrigation water levels, so that a comparative analysis could be done on productivity levels. The research was conducted at the University of South Africa (Unisa) Science Campus, in Florida, Gauteng (-26.157831 S, 27.903364 E) during the 2017/2018 and 2018/2019 growing seasons. A factorial experiment with two factors – soil (loamy soil and sandy loam soil) and water stress levels (no water stress, moderate water stress and severe water stress). The pot experiments were a completely randomised design with nine (9) replicates per treatment. Data collected included total biomass, aboveground biomass, harvest index and water use efficiency. Results illustrated that treatment of moderate water stress combined with loamy soil and shade net decreased WUE from 6.2 to 1.4 kg m-3, whereas treatment combination of no water stress combined with sandy loam and open field environment demonstrated increase in WUE from 1.4 to 6.2 kg m-3. Nutritional concentration of most crops depends on factors such as amount of water, growing environment, light intensity and soil types. However, factors influencing nutritional concentration of C. metuliferus fruits is not yet known. Another objective of the study was to determine the effect of different water stress levels, soil types and growing environment (greenhouse, shade net and open field) on the concentration of nutrients in C. metuliferus fruit. Freeze-dried fruit samples were used in the quantification of ꞵ-carotene, vitamin C, vitamin E, total soluble sugars, crude proteins, total flavonoids, total phenols, macro-nutrients (Ca, Mg, P, K, Na and S), and micro-nutrients (Cu, Fe, Mn and Zn). Results demonstrated that plants grown under shade net, combined with severe water stress level and loamy soil, had increased total soluble sugars (15.8 ˚Brix) compared to other treatments. Plants under shade net environment, combined with moderate water level and loamy soil, resulted in increased crude protein content (6.31 ˚Brix). The severe water stress treatment combined with loamy soil under greenhouse conditions resulted in increased ꞵ-carotene content (1.65 mg 100 g-1 DW) when compared to other treatments. Regarding vitamin C, the treatment of no water stress combined with loamy soil under shade net environment showed higher content of (33.1 mg 100 g-1 DW). The severe water stress treatment combined with sandy loam soil under greenhouse environment, increased vitamin E content (35.1 mg 100 g-1 DW) when compared to other treatments. The treatment of open field under severe water stress level and loamy soil increased total flavonoids content (0.85 mg CE/g-1 DW) in the fruit when compared to other treatments. The results thus imply that this plant bears better-quality fruit in terms of concentration of nutrients and biochemical constituents when grown under no to moderate water stress treatment on the loamy or sandy loam substrate in the shade net and open field environment. Primary metabolites are biological compounds that are essential to the growth and development of a plant during its life cycle. They have a direct impact on the yield and biochemical constituents in plants. Quantities of the primary metabolites were determined using the LC-MS-8040 triple quadrupole mass spectrometer (Shimadzu) from fruits harvested from treatments mentioned above. The results showed that the no water stress treatment combined with sandy loam under shade net environment significantly (P≤0.05) increased asparagine content from 10×106 to 80x106 peak intensity when compared to other treatments. The severe water stress treatment combined with sandy loam soil under open field environment during the 2017/2018 season, significantly increased dopa content from 12,030 to 324,240 peak intensity, while during the 2018/2019 season, 4-hydroxyproline from 10×106 to 90x106 peak intensity the was significantly increased. The study suggests that the treatment combination of water stress levels (no water stress and severe water stress) and soil substrates (loamy soil and sandy loam) under greenhouse and shade net significantly affected the shift of primary metabolites profile of C. metuliferus fruit as opposed to individual factors, respectively. There is therefore great potential to commercialise this crop; however, there is still a great deal that is not well understood of its growth habits and biological/biochemical constituents as a future alternative crop. / Ndzavisiso lowu wu endliwe ku lavisisa hi matirhelo na khwaliti ya Cucumis metuliferus E. Mey. Ex Naudin (African horned cucumber) eka mimbangu na mavala lama sirheleriweke na hi xikongomelo xa ku kotlanisa ntshovelo na vuxopaxopi bya khwaliti hi xikongomelo xa ku endla minxaviso ya ximila. Xikongomelonkulu xa ku vona ku faneleka ku kula ka C. metuliferus exikarhi ka ti-greenhouse, nete ya ndzhuti na mimbangu ya le rivaleni ku endlela ku pfuneta nxopaxopo. Timbewu ta C. metuliferus ta nonon'hwa ku tihlukisa ehansi ka swiyimo swa mbangu leswi faneleke laha varimi va tirhaku eka tona. Ku hlukisa swi kamberiwe hi ku langutana na midiyamu ya ku kula, skarifikhexini na switifiketi swa timbewu. Swilo leswi swi lawula ntshovelo na khwaliti ya muhandzu. Xikongomelonkulu xa ndzavisiso lowu a ku ri ku lavisa hi vuyelo bya ku nyikiwa ka switifiketi, midiyamu ya ku kula (sand + vermiculite, peat TS1 and seedling mix) na skarifikhexini eka ku humelela ku hlukisa timbewu ta C. metuliferus E. Mey. ex naudin. Timbewu ti klasifayiwile ehansi ka tikhathegori ta mune to hambana, ku nga, treated certified, non-treated certified, treated uncertified, na non-treated uncertified.Hi vunharhu ka timediya leti ti ve na nhlukiso wa xiyenge hi 80%. Vuyelo byi kombise leswo treated certified na non-treated certified ti ve na ku humelela ka le henhla ka nhlukiso hi 93.6% na 91.3% hi ku landzelelana. Vuhumeleri bya nhlukiso wa le hansi ku ve timbewu ta treated uncertified hi vuyelo bya 37%. Vulehi bya 12 cm byi voniwe eka certified seedlings tanihi bya le henhla swinene. Swimilani swa unscarified na swa uncertified swi ve na timbewu ta le hansi, ta vulehi bya 3.44 cm eka vhiki ra vumune. Hikokwalaho, seed certification swi ve na vuyelo ngopfu ku tlula scarification hi majini ya le henhla swinene. Ku khomaniseka ka ximila eka bolo ya misava i swa nkoka eka ku pona no ya emahlweni ka ximila loko xi transplantiwa, kasi ndzavisiso lowu wu tlakusa leswo ku va na peat na timbewu leti nga na switifiketi tanihi ndlela yo antswa swinene ya ku kurisa swimila na ku va na swimila swa khwaliti. Ku pfumaleka ka mati, nkulo wa swilo hinkwaswo na ku cinca ka tlayimete i swa nkoka leswi khumbaka ku tirheka ka vurimi eka malembexidzana ya 20. Cucumis metuliferus yi kula hi ntumbuluko enhoveni; kambe ntshovelo wa yona wu angula eka ku kala ka mati, tindhawu to hambana ta ku rimiwa na mixaka ya misava, a swi si kamberiwa. Ku endliwe ndzavisiso ku vona ku faneleka ka mafambiselo ya ku kurisa ximila eka greenhouse, nete ya ndzhuti eka swiyimo swa mavala lama pfulekeke, leswo nxopaxopo wu ta kotlanisiwa eka tilevhele ta vuyelo bya ntshovelo loku nga endliwaka. Ndzavisiso wu endliwe eka greenhouse, nete ya ndzhuti na swiyimo swa mavala lama pfulekeke eKhempasi ya Sayense eUniversity of South Africa (Unisa) eFlorida, eGauteng (26.157831 S, 27.903364 E) hi nkarhi wa 2017/2018 na 2018/2019 hi tisizini ta ku byala. Ekspirimente leyi nga na swilo swimbirhi – ku nga misava ya loamy na misava ya misava ya sava ya loam) na levhele ya ncheleto wa mati (laha ku nga ri ku na mati kahle, laha ku nga na matinyana na laha ku kalaka mati). Xipirimente xa le mapotweni xi endliwe hi ndlela yo ka yi nga kunguhatiwangi hi ku tirhisa ku phindaphinda ka nkaye (9), na dizayini ya kona leyi nga kombisiwa laha henhla. Tipharamita ta ku pimiwa ti katsa chlorophyll content, stomatal conductance na xiyenge xa ntshovelo, xo fana na ku tirhisa mati, vuheleri bya biomass, biomass ehenhla ka bayomasi ya misava, indeksi ya ntshovelo, vulehi bya muhandzu, nhlayo ya mihandzu, na ku tirhisiwa ka mati hi ndlela yo hlayisa. Vuyelo byi kombise leswo tirhelo ra mavala lama pfulekeke swi pfanganisiwa na ndhawu yo kala mati na misava ya sava ya loam, swi ngetela nhlayo ya mihandzu. Ku tirhiwa ka swiyimo swa mavala lama nga pfuleka, swi hlanganisiwa na ndhawu yo kalanyana mati na misava ya sava ya loam, swi kombise ku tirhisiwa kahle ka mati ka le henhla hi (6. 2 kg m-3) loko swi kotlanisiwa na ku tirhiwa ku n'wana. I swa nkoka ku lemuka leswaku a ku va ngi na ku hambana ku kulu exikarhi ka misava ya sava ya loam na misava ya loam eka ntirhiso wa mati lowu ku nga water use efficiency (WUE). Kambe, misava ya sava ya loam yi kombise xiyenge xa le henhla xa WUE loko swi kotlangisiwa na misava ya loam. Hikokwalaho ku nga fikeleriwa eka mhaka ya leswo ku pfanganisa ku tirhana na mavala yo pfuleka, tilevhele ta ncheleto wa mati (kahle na le xikarhi) na misava ya sava ya loam swa bumabumeriwa eka varimi leswo ku ta fikelekeleriwa xiyenge xa le henhla xa WUE na ku humelela ka ntshovelo wa C. metuliferus. Ku hlengeletana ka tinutriyente eka ndhawu yin'we (nutritional concentration) ka swimila swi titshege hi swilo swo fana na leswi kumekaka eka mati, mbangu wa ku kula, masana ya dyambu na mixaka ya misava. Kambe, swilo swo fana na ku hlengeletana ka tinutriyente ta mihandu ya C. metuliferus a swi si tiveka. Xikongomelo xa ndzhavisiso a ku ri ku vona vuyelo bya tilevhele to hambana ta ku kala ka mati (ku pfumaleka ka mati, ku pfumalekanyana, na ku pfumaleka swinene ka mati), mixaka ya misava (misava ya loam na misava ya sava) mbangu wa ku kula (greenhouse, nete ya ndzhuti na mavala yo pfuleka) hi ku pfangana na tinutriyente eka mihandzu ya C. metuliferus E. Mey. ex naudin. Tisampuli ta mihandzu leyi nga omisiwa yi friziwa ti tirhisiwe eka ku endla vunyingi bya ꞵ-carotene, Vhitamini C, Vhitamini E, na total soluble sugars, ti-crude protein na ti-total flavonoids, total phenols, na micro-nutrients (Cu, Fe, Mn na Zn). Vuyelo bya ndzavisiso byi kombise leswo swimila leswi nga kurisiwa eka nete ya ndzhuti, swi pfanganisiwa na levhele ya nkalo wa mati swinene na misava ya loam, swi ngetele ti-soluble sugars hi (15.8 ˚Brix) loko ku kotlanisiwa na ku tirhiwa kun'wana. Swimila leswi nga hansi ka mbangu wa nete ya ndzhuti, swi pfanganisiwa na nkayivelonyana wa mati hi vuxikarhi na misava ya loam, swi ve na vuyelo bya ku ngetela crude protein content hi (6.31˚Brix). Ku tirhiwa ka nkayivelo wa mati swinene swi pfanganisiwa na misava ya loam ehansi ka swiyimo swa greenhouse swi ngetelele ꞵ-carotene content (1.65 mg/100 g-1 DW) loko swi kotlanisiwa na ku tirhiwa kun'wana. Ku tirhiwa ka ku kayivela ka mati swi pfanganisiwa na misava ya loam ehansi ka mbangu wa nete ya ndzhuti swi kombise ku ngeteleleka ka vhitamini C hi (33.1 mg 100 g-1 DW). Ku tirhiwa ka nkayivelo wa mati swinene swi pfanganisiwa na misava ya loam ehansi ka swiyimo swa mbangu wa greenhouse swi ngetelele vhitamin E hi (35.1 mg 100 g-1 DW) loko swi kotlanisiwa na ku tirhiwa kun'wana. Ku tirhiwa ka mavala lama nga rivaleni eha CE g-1 DW) loko swi kotlanisiwa na ku tirhiwa kun'wana. Ku tirhana na nkayivela mati ka levhela ya le xikarhi na misava ya sava ya loam ehansi ka mbangu wa nete ya ndzhuti swi kombise ku ngeteleleka ka Zn content (12.7 μg g-1 DW) loko swi kotlanisiwa na ku tirhiwa kun'wana. Vuyelo byi kombisa leswaku ximila lexi xi na mihandzu ya khwaliti yo antswa hi ku landza ku hlengeletana ka tinutriyeente na tikhonstituwenti ta bayokhemikali, loko xi kurisiwa ehansi na ku ka ku nga ri na nkayivela mati kumbe ku kayivelanyana ka mati, hi ku tirhisa misava ya loam kumbe misava ya sava eka nete ya ndzhuti na le ka mavala ya le rivaleni.Ti-primary betabolites ti tlhela titiviwa tanihi biological compounds leti ti faneleke eka ku kula na ku hluvuka ka ximila hi nkarhi wa vutomi bya xona. Ti na vuyelo byo kongoma eka ntshovelo na tikhonsticuwenti ta bayokhemikala eka swimila. Vunyingi bya primary metabolites swi vekiwe hi ku tirhisa LC-MS-8040 triple quadrupole mass spectrometer (Shimadzu) eka mihandzu leyi nga ntshovelo wa ku tirhiwa kun'wana loku ku nga vuriwa laha henhla. Vuyelo byi kombe leswo ku tirhana na nkala nkayivelo wa mati, swi pfanganisiwa na misava ya loam ehansi ka mbangu wa nete ya ndzhuti, swi ngetelele swinene asparagine content from 10×106 to 80x106 nsi ka nkayivelo swinene wa mati na misava ya loam, swi ngetelele ti-total mz loko swi kotlangisiwa na ku tirhiwa kun'wana. Ku tirhana na nkayivelo wa mati swinene, swi pfanganisiwa na misava ya sava ya loam ehansi ka mbangu wa mavala lama pfulekeke hi nkarhi wa sizini ya 2017/2018, swi ngetelele swinene dopa content ku suka eka 12,030 to 324,240 peak intensity, kasi hi nkarhi wa sizini ya 2018/2019 season, 4-hydroxyproline ku 10×106 to 90x106 peak intensity swi ngeteleleke swinene. Ku tirhana ko fanana ehansi ka mbangu wa greenhouse, swi ngetelele swinene acetylcarnitine content ku suka eka 3,761 to 82,841 area under the curve hi nkarhi wa sizini ya 2018/2019. Ku tirhiwa ka ku nga ri na ku kayivela ka mati ka le xikarhi swi pfanganisiwa na misava ya loam ehansi ka mbangu wa mavala lama nga rivaleni swi ngetelele swinene norepinephrine content from 71,577 to 256,1045 peak intensity. Ndzavisiso wu pimanyete leswo mpfanganyiso wa ku tirhana na tilevhele ta ncheleteo wa mati (laha ku nga ri ku na ku kayivela ka mati na le ku nga na nkayivelo wa mati) na misava ya loam na misava ya sava ya loam) ehansi ka greenhouse na nete ya ndzhuti swi khumbe swinene ku xifta ka mihandzu ya primary metabolites profile of C. metuliferus E. Mey. ex naudin loko ku langutaniwa na tifekthara ha yin'we yin'we hi ku landzelelana.flavonoids content (0.85 mg CE g-1 DW) loko swi kotlanisiwa na ku tirhiwa kun'wana. Ku tirhana na nkayivela mati ka levhela ya le xikarhi na misava ya sava ya loam ehansi ka mbangu wa nete ya ndzhuti swi kombise ku ngeteleleka ka Zn content (12.7 μg g-1 DW) loko swi kotlanisiwa na ku tirhiwa kun'wana. Vuyelo byi kombisa leswaku ximila lexi xi na mihandzu ya khwaliti yo antswa hi ku landza ku hlengeletana ka tinutriyeente na tikhonstituwenti ta bayokhemikali, loko xi kurisiwa ehansi na ku ka ku nga ri na nkayivela mati kumbe ku kayivelanyana ka mati, hi ku tirhisa misava ya loam kumbe misava ya sava eka nete ya ndzhuti na le ka mavala ya le rivaleni.Ti-primary betabolites ti tlhela titiviwa tanihi biological compounds leti ti faneleke eka ku kula na ku hluvuka ka ximila hi nkarhi wa vutomi bya xona. Ti na vuyelo byo kongoma eka ntshovelo na tikhonsticuwenti ta bayokhemikala eka swimila. Vunyingi bya primary metabolites swi vekiwe hi ku tirhisa LC-MS-8040 triple quadrupole mass spectrometer (Shimadzu) eka mihandzu leyi nga ntshovelo wa ku tirhiwa kun'wana loku ku nga vuriwa laha henhla. Vuyelo byi kombe leswo ku tirhana na nkala nkayivelo wa mati, swi pfanganisiwa na misava ya loam ehansi ka mbangu wa nete ya ndzhuti, swi ngetelele swinene asparagine content from 10×106 to 80x106 mz loko swi kotlangisiwa na ku tirhiwa kun'wana. Ku tirhana na nkayivelo wa mati swinene, swi pfanganisiwa na misava ya sava ya loam ehansi ka mbangu wa mavala lama pfulekeke hi nkarhi wa sizini ya 2017/2018, swi ngetelele swinene dopa content ku suka eka 12,030 to 324,240 peak intensity, kasi hi nkarhi wa sizini ya 2018/2019 season, 4-hydroxyproline ku 10×106 to 90x106 peak intensity swi ngeteleleke swinene. Ku tirhana ko fanana ehansi ka mbangu wa greenhouse, swi ngetelele swinene acetylcarnitine content ku suka eka 3,761 to 82,841 area under the curve hi nkarhi wa sizini ya 2018/2019. Ku tirhiwa ka ku nga ri na ku kayivela ka mati ka le xikarhi swi pfanganisiwa na misava ya loam ehansi ka mbangu wa mavala lama nga rivaleni swi ngetelele swinene norepinephrine content from 71,577 to 256,1045 peak intensity. Ndzavisiso wu pimanyete leswo mpfanganyiso wa ku tirhana na tilevhele ta ncheleteo wa mati (laha ku nga ri ku na ku kayivela ka mati na le ku nga na nkayivelo wa mati) na misava ya loam na misava ya sava ya loam) ehansi ka greenhouse na nete ya ndzhuti swi khumbe swinene ku xifta ka mihandzu ya primary metabolites profile of C. metuliferus E. Mey. ex naudin loko ku langutaniwa na tifekthara ha yin'we yin'we hi ku landzelelana. / Thuto ye e dirilwe ka maikemišetšo a go nyakišiša tiragatšo le boleng bja Cucumis metuliferus E. Mey. Ex Naudin (phara ya seAfrika) mo tikologong yeo e šireleditšwego le ya mo lebaleng e le nepo ya go bapetša tshekatsheko ya kotollu le boleng go hola thekišo ya mabele. Maikemišetšo kakaretšo e le go humana tsela ya maleba ya go mediša C. Metuliferus dipakeng tša mokhukhutšhireletšo, nnete ya moriti le mo ditikologong tša mabala ao a bulegilego gore go nolofatšwe tshekatsheko. Go boima go mediša dipeu tša C. Metuliferus ka tlase ga maemo a tikologo ya maleba ya go tlwaelega yeo e šomišwago ke bontši bja balemi. Medišo ya dipeu e lekanyeditšwe go ya le ka sedirišwa sa go mediša dimela, go fala dipeu le go hlahlobo ya boleng bja dipeu. Dikokwana tše ke tšona di laolago kotollu le boleng bja dienywa. Nepokgolo ya thuto ye e be e le go nyakišiša khuetšo ya tlhahlobo ya polokego ya dipeu tše, sedirišwa sa go mediša dimela (mohlaba+vermiculite, peat TS1 le motswako wa dipeu) le phalo ya dipeu go kgonthišiša katlego ya go mela ga dipeu tša C. Metuliferus. Dipeu di ile tša arolwa go ya le ka magoro a mane, bjalo ka peu ya go okobatšwa ka dikhemikhale yeo e hlahlobilwego, peu yeo e sa okobatšwago gomme e hlahlobilwe, peu ya go okobatšwa e sa hlahlobjwago le peu yeo e sa okobatšwago gomme e se ya hlahlobjwa. Boraro bja didirišwa tše di laeditše katlego ya go mediša yeo e ka balelwago go 80%. Dipoelo di šupa gore dipeu tšeo di okobaditšwego di se a hlahlobjwa le tšeo di sa okobatšwago di hlahlobilwe di bile le katlego ya tlhogo yeo e ka balelwago go 93.6% le 91.3%. Tlhogo ya fase e bile go dipeu tšeo di okobaditšwego di sa hlahlobjwago ka poelo ya 37%. Dipeu tše di hlahlobilwego di laeditše botelele bja 12cm gomme e le bjona bja go di feta ka moka. Dipeu tšeo di sa falwago le go hlahlobjwa di bile le botelele bja fase bja go balelwa go 3.44 cm ka dibeke tše nne. Bjalo, tlhahlobo ya dipeu e tlišitše katlego go fetiša phalo. Ka ge mudu wa dipeu o le bohlokwa go tšhutišetšo ya maphelo a dimela, thuto ye e thekga mmutedi le tlhahlobo ya dipeu bjalo ka tlhakanyo ya go mediša dimela tša boleng bja maleba. Tlhokego ya meetse, go oketšega ga baagi, le diphetogo tša klaemete ke tšona dikokwana tše di amago tšwelelo go tša temo nakong ya bjale. C. Metuliferus E. Mey. ex naudin e mela ka lešokeng tlhagong ya yona; efela, kotullo ya yona go tlhokego ya meetse, go mehuta ya mašemo le mehuta ya mabu ga se e ahlaahlwe. Thuto e ile ya dirwa go humana mokgwa wa go bjala/mediša dimela dipakeng tša mokhukhutšhireletšo, nnete ya moriti le boemo bja lebala le le bulegilego, gore go tle go tšweletšwe tshekatsheko yeo e laetšago diphapano tša mabato a puno. Nyakišišo ye e diritšwe ka fase ga maemo a mokhukhutšhireletšo, nnete ya moriti le lebaleng le le bulegilego Yunibesithing ya Afrika Borwa (UNISA) Khamphasing ya tša Saense, go la Florida, Gauteng (-26.157831 S, 27.903364 E) ka nako ya sehla sa 2017/2018 le 2018/2019 ka dinako tša go mela. Teko ye e ithekgile godimo ga dikokwana tše pedi – mabu (monola le mohlaba) le mabato a taolo ya go nošetša (tlhokego ya meetse ya lebato la fase, tlhokego ya meetse ye e lekanetšego le tlhokego ya meetse ya lebato la godimo). Diteko di be di beilwe ka mokgwa wo o sa rulaganywago gomme teko ye nngwe le ye nngwe e boeleditšwe ga senyane (9) bjalo ka ge e laeditšwe godimo. Dipharametha tšeo di lekantšwego di akaretša dikagare tša chlorophyll, stomatal conductance le bjalo ka tšhomišo ya meetse, palomoka ya dimela, dimela tše di bonagalago ka godimo, lenaneo la puno, botelele bja enywa, palo ya enywa le tšhomišo ya meetse ke dimela. Dipoelo di tšweletša gore teko ya mo lebaleng le le bulegilego le meetse a a lekanetšego gammogo le monola di oketša palo ya dienywa. Teko ya mo lebaleng le le bulegilego go kopantšhwa le meetse ao a lekanetšego le monola, di laeditše tšhomišo ya meetse yeo e balelwago go (6.2 kg m-3) ge go bapetšwa le diteko tše di ngwe. Go bohlokwa go lemoga gore ga ga go na diphapano magareng ga mohlaba le monola tšhomišong ya meetse (WUE). Efela, mohlaba o laeditše (WUE) ya godimo ge go bapetšwa le monola. Se se bolela gore, go ka tšewa sephetho sa gore teko ya dipeu lebaleng le le bulegilego, taolo ya go nošetša dimela (ye gabotse le ye e lekanetšego) le mohlaba ke didirišwa tšeo go eletšwago balemi gore ba di šomiše go humana (WUE) ya godimo le tšweletšo ye e atlegilego ya C. metuliferus. Bontši bja phepo mo mabeleng bo hlohleletšwa ke dikokwana tša go swana le meetse, tikologo ya mo a melago gona, dihlase tša letšatši le mehuta ya mabu. Efela, dikokwana tše di huetšago bontši bja diphepo go dienywa tša C. metuliferus ga dišo di tsebjwa. Nepo ya thuto ye e be e le go nyakolla khuetšo yeo dikokwana tše di latelago; di nago le yona go bontši bja diphepo go enywa ya C. Metuliferus: mabato a meetse (tlhokego ya meetse ya lebato la fase, tlhokego ya meetse ye e lekanetšego le tlhokego ya godimo ya meetse), mehuta ya mabu (monola le mohlaba) le tikologo ya go mediša (mokhukhutšhireletšo, nnete ya moriti le lebala le le bulegilego). Diteko tša enywa yeo e omišitšwego ka setšidifatšing e ile ya šomišwa go tšweletša boleng bja ꞵ-carotene, vitamin C, vitamin E, total soluble sugars, crude proteins, total flavonoids, total phenols, le micro-nutrients (Cu, Fe, Mn le Zn). Dipoelo di šupa gore dimela tše di godišitšwego ka fase ga nnete ya moriti, go akaretša le tlhokego ya meetse ya godimo le monola di nyološitše diswikiri tše di humanegago mo dimeleng (15.8 ˚Brix) ge go bapetšwa le diteko tše dingwe. Dimela tikologong ya nnete ya moriti go akaretša le tlhokego ya meetse ye e lekanetšego le monola di ile tša nyološa phroteine (6.31 ˚Brix). Teko go tlhokego ya meetse ya godimo go akaretša le monola ka tlase ga boemo bja mokhukhutšhireletšo go nyološitše diteng tša ꞵ-carotene (1.65 mg 100 g-1 DW) ge e bapetšwa le diteko tše dingwe. Teko go tlhokego ya meetse go akaretša monola ka fase ga nnete ya moriti go nyološitše Vitamin C (33.1 mg100 g-1 DW). Teko go hlokego ya meetse ya godimo go akaretša mohlaba tikologong ya mokhukhutšhireletši go nyološitše diteng tša vitamin E (35.1 mg/100 g-1 DW) ge e bapetšwa le diteko tše dingwe. Teko ya go se hlokege ga meetse, go akaretša le monola tikologong ya lebala le le bulegilego e nyološitše palomoka ya diteng tša phenolic (6.4 mg GAE/g-1 DW) ge e bapetšwa le diteko tše dingwe. Teko lebala le le bulegilego ka fase ga hlokego ya meetse ye godimo go akaretša monola go okeditše diteng tša flavonoids (0.85 mg CE g-1 DW) mo dienyweng tša gona ge e bapetšwa le diteko tše dingwe. Teko go hlokego ya meetse ye e lekanetšego le mohlaba ka fase ga nnete ya moriti di laeditše go oketšega ga diteng tša Zn (12.7 μg g-1 DW) ge e bapetšwa le diteko tše dingwe. Dipoelo di laetša gore semela se se thunya boleng bjo bo kgodišago bja dienywa ge go lebeletšwe bontši bja diphepo le dikokwana tša dikhemikhale ge di medišwa mo go sa hlokegago meetse go yela go mo go hlokegago meetse ka go lekanela, go šomišitšwe monola goba mohlaba mo nneteng ya moriti le mo lebaleng le le bulegilego. Dimetabolite tša motheo di tsebjwa bjalo ka motswako wa tlhago wo o lego bohlokwa go kgolo le tlhabollo ya dimela maphelong a tšona. Di na le khuetšothwii go dikokwana tša puno le khemikhale ya hlago ya dimela. Bontši bja dimetabolites tša motheo di humanwe ka go šomiša LC-MS-8040 triple quadrupole mass spectrometer (Shimadzu) ya go tšwa dienyweng tšeo di bunnwego ditekong tše di šetšego di boletšwe. Dipoelo di laeditše gore teko ya hlokego ya meetse ya lebato la fase go akaretša le mohlaba tikologong ya nnete ya moriti; e nyološitše asparagine content go tloga go 10×106 go ya go 80x106 peak intensity ge e bapetšwa le diteko tše dingwe. Tlhokego ya meetse ya lebato la fase e akaretša le monola tikologong ya lebala le le bulegilego ka nako ya sehla sa 2017/2018, 4-hydroxyproline go tšwa go 10×106 go ya go 90x106 area under curve e ile ya nyušwa. Teko ya go swana le ye tikologong ya mokhukhutšhireletšo e ile ya oketša dikagare tša acetylcarnitine go tšwa go 3,761 go ya go 82, 841 peak intensity ka nako ya sehla sa 2018/2019. Teko go tlhokego ya meetse ye e lekanetšego go akaretšwa le monola tikologong ya lebala le le bulegilego e nyološitše dikagare tša norepinephrine go tloga go 71,577 go ya go 256,1045 peak intensity. Diteko di šupa gore ge go kopantšwe taolo ya mabato a go nušetša (tlhokego ya meetse ya lebato la fase le tlhokego ya meetse ya lebato la godimo) le (monola le mohlaba) ka fase ga boemo bja mokhukhutšhireletšo le nnete ya moriti go ile gwa ama katološo ya dimetabolites tša motheo tša enywa ya C. metuliferus ge di bapetšwa le kokwana ye nngwe le nngwe. / College of Agriculture and Environmental Sciences / Ph. D. (Agriculture)
34

Yield and quality response of hydroponically grown tomatoes (Lycopersicon esculentum Mill.) to nitrogen source and growth medium

Langenhoven, Petrus 12 1900 (has links)
Dissertation (PhD)--Stellenbosch University, 2004. / ENGLISH ABSTRACT: Pine sawdust-shavings (Pinus spp.) is at present a very popular soilless substrate in South African greenhouses. Growers use fresh pine sawdust-shavings as a substrate, which is biologically highly unstable. The greenhouse industry is looking at alternative organic substrates such as coco peat, which already went through a decomposition process and is more stable. A biological inactive substrate such as sand was included to compare microorganism activity with organic substrates. The main objective of this study was to compare the growth, yield and quality of hydroponically grown tomatoes in response to different growth mediums in combination with nitrogen source, irrigation frequency, period of substrate use and liming. In general the drainage water pH declined with an increase in NlLt+-N in the nutrient solution. Low pH values in the drainage water, especially when coco peat was used, had a detrimental effect on marketable yield. The drainage water pH of pine sawdustshavings increased during the growing season when 100 % N03--N was used. Due to the higher cation exchange capacity of coco peat, the drainage water electrical conductivity tends to increase more rapidly than with pine sawdust-shavings, during conditions with high temperatures and when insufficient irrigation volumes per irrigation cycle is applied. As expected the drainage water N03--N content decreased as the NlLt+-N content increased in the nutrient solution. Pine sawdust-shavings recorded a much lower N03--N and NlLt+-N content than sand and coco peat and thus supports the hypothesis that microbiological activity is higher in pine sawdustshavings, especially in the second season of substrate use. Coco peat produced the highest number of marketable fruit and yield per plant, followed by pine sawdustshavings and sand in the first season of substrate use. The number of marketable fruit and yield decreased with an increase in NlLt+-N content in the nutrient solution during production in warmer, summer conditions. Contrary to these fmdings, production in cooler, winter conditions recorded high yields when only N03--N or 80% N03--N : 20% NRt +-N was applied. The unmarketable yield increased with an increase in NlLt+-N in the nutrient solution. Visual evaluations showed that blossom-end rot (BER) was the main contributor to unmarketable yield. Increasing levels ofN03--N as nitrogen source in the nutrient solution, reduced weight loss and increased the loss of fruit firmness of tomatoes during storage. Increasing levels of N03 --N also increased fruit pH and reduced total titratable acidity. Coco peat produced fruit with a higher pH than pine sawdust-shavings. An increase in irrigation frequency affected fruit firmness negatively when coco peat was used as substrate. Different irrigation and fertigation practices are needed for different growth mediums and management needs to be adapted according to the growing season (winter vs. summer). / AFRIKAANSE OPSOMMING: 'n Mengsel van dennesaagsels en -skaafsels (Pinus spp.) word tans deur Suid- Afrikaanse kweekbuisprodusente gebruik as grondlose groeimedium. Hierdie groeimedium word nie vooraf gekomposteer nie en is dus biologies onstabiel. Die kweekbuisindustrie ondersoek tans die gebruik van alternatiewe, gekomposteerde en stabiele organiese groeimediums soos kokosveen. 'n Biologies onaktiewe groeimedium soos sand is ook ingesluit om met organiese groeimediums te kan vergelyk. Die hoof doelwit van die studie was om plantontwikkeling, opbrengs en kwaliteit van hidroponies geproduseerde tamaties te evalueer in verskillende groeimediums en in kombinasie met stikstofbron-verhouding, periode van groeimedium gebruik, besproeiingsfrekwensie en bekalking. Oor die algemeen het die pH in die dreinaat gedurende die groeiseisoen toegeneem soos die NH/-N inhoud verhoog het in die voedingsoplossing. Lae pH waardes in die dreinaat, veral waar kokosveen gebruik was, het 'n nadelige effek op bemarkbare opbrengs gehad. Die pH in die dreinaat van dennesaagsels en -skaafsels het gedurende die groeiseisoen toegeneem met die gebruik van 100% NO)--N in die voedingsoplossing. Die elektriese geleiding in die dreinaat van kokosveen neem vinniger toe gedurende toestande waarin hoë temperature en onder besproeiing voorkom, as in dreinaat van dennesaagsels en -skaafsels. Die NO)--N inhoud in die dreinaat het soos verwag afgeneem soos die NRt+-N inhoud in die voedingsoplossing toegeneem het. 'n Baie laer NO)--N en NRt+-N inhoud is by dennesaagsels en -skaafsels aangeteken wat dus die hipotese ondersteun dat mikrobiologiese aktiwiteit, veral in die tweede seisoen van gebruik, hoër is in dennesaagsels en -skaafsels as in sand en kokosveen. Kokosveen het die hoogste aantal bemarkbare vrugte en massa per plant geproduseer, gevolg deur dennesaagsels en -skaafsels en sand. Die aantal bemarkbare vrugte en opbrengs het verlaag met 'n verhoging in NRt+-N in die voedingsoplossing gedurende warm, somer toestande. In teenstelling met vorige resultate is gevind dat 100% NO)-- N of 80% NO)--N : 20% NRt+-N hoë opbrengste gelewer het gedurende koeler, winter toestande. Die onbemarkbare opbrengs het verhoog met hoër NRt+-N vlakke. Visuele waarnemings het aangedui dat blom-end verrotting die grootste bydrae tot onbemarkbare opbrengs gelewer het. 'n Verhoging in NO)--N vlakke het massaverlies beperk en die verlies in fermheid verhoog gedurende opberging. Hoër NO)--N vlakke het ook die pH van vrugte verhoog en die totale titreerbare suur verlaag. Kokosveen het vrugte met 'n hoër pH as dennesaagsels en -skaafsels geproduseer. 'n Toename in besproeiingsfrekwensie het vrug fermheid negatief beïnvloed wanneer kokosveen as groeimedium gebruik was. Verskillende besproeiings- en voedingspraktyke word benodig vir verskillende groeimediums en bestuur van die groeimediums moet aangepas word by klimaatstoestande gedurende die spesifieke produksieseisoen.
35

THE USE OF SOIL AMENDMENTS TO INCREASE TRANSPLANT SURVIVAL ON ARID CRITICALLY DISTURBED SITES.

DePaul, Linda Christine. January 1983 (has links)
No description available.
36

Recycling of agro-industrial wastes by vermiculture.

January 1994 (has links)
by Ng Ki Chi. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1994. / Includes bibliographical references (leaves 130-145). / Acknowledgments / Abstract / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Waste Management in Hong Kong --- p.1 / Chapter 1.2 --- Sources of Organic Wastes and Their Characteristics --- p.4 / Chapter 1.2.1 --- Animal manure --- p.5 / Chapter 1.2.2 --- Sewage sludge --- p.7 / Chapter 1.2.3 --- Food waste --- p.7 / Chapter 1.3 --- Organic Waste Recycling --- p.9 / Chapter 1.3.1 --- Organic wastes for land application --- p.9 / Chapter 1.3.1.1 --- Animal manure --- p.11 / Chapter 1.3.1.2 --- Sewage sludge --- p.12 / Chapter 1.3.1.3 --- Plant residue --- p.14 / Chapter 1.3.2 --- Composting --- p.15 / Chapter 1.3.3 --- Biogas production --- p.16 / Chapter 1.3.4 --- Organic wastes as feedstuffs or feed supplements --- p.18 / Chapter 1.3.4.1 --- Animal manure --- p.18 / Chapter 1.3.4.2 --- Sewage sludge --- p.19 / Chapter 1.3.4.3 --- Plant residue --- p.20 / Chapter 1.3.4.4 --- Biological products from waste conversion --- p.21 / Chapter 1.4 --- Objectives and Outlines of the Present Study --- p.26 / Chapter Chapter 2 --- Vermiculture of Eisenia foetida and Pheretima asciatica on Different Agro- industrial Wastes --- p.29 / Chapter 2.1 --- Introduction --- p.29 / Chapter 2.2 --- Materials and Methods --- p.34 / Chapter 2.2.1 --- Collection of materials --- p.34 / Chapter 2.2.2 --- Preparation of earthworms --- p.34 / Chapter 2.2.3 --- Culture trial --- p.35 / Chapter 2.2.4 --- Harvesting of earthworms --- p.35 / Chapter 2.2.5 --- "Chemical analysis of bedding material, wastes and worm tissues" --- p.37 / Chapter 2.2.6 --- Statistical analysis --- p.38 / Chapter 2.3 --- Results and Discussion --- p.38 / Chapter 2.3.1 --- Chemical properties of organic wastes and bedding material --- p.38 / Chapter 2.3.2 --- Heavy metal contents in bedding material and organic wastes --- p.41 / Chapter 2.3.3 --- Effects of organic wastes on worm growth --- p.43 / Chapter 2.3.4 --- Effects of organic wastes on protein contents and protein yields --- p.47 / Chapter 2.4 --- Conclusions --- p.49 / Chapter Chapter 3 --- "Effects of Soybean Waste, Pig Manure and Digested Sludge on the Quality of Worm Meal From Eisenia foetida and Pheretima asciatica" --- p.53 / Chapter 3.1 --- Introduction --- p.53 / Chapter 3.2 --- Materials and Methods --- p.59 / Chapter 3.2.1 --- Collection of materials --- p.59 / Chapter 3.2.2 --- Preparation of earthworms --- p.59 / Chapter 3.2.3 --- Experimental design and setup --- p.59 / Chapter 3.2.4 --- Harvesting of earthworms --- p.61 / Chapter 3.2.5 --- Chemical analysis of worm tissues --- p.61 / Chapter 3.2.6 --- Statistical analysis --- p.63 / Chapter 3.3 --- Results and Discussion --- p.63 / Chapter 3.3.1 --- Effects of wastes on worm growth --- p.63 / Chapter 3.3.2 --- Nutrient contents of earthworms from different wastes --- p.69 / Chapter 3.3.3 --- Heavy metal contents in earthworm tissues --- p.72 / Chapter 3.4 --- Conclusions --- p.81 / Chapter Chapter 4 --- Worm Meal as Protein Source for Fish Diet --- p.82 / Chapter 4.1 --- Introduction --- p.82 / Chapter 4.2 --- Materials and Methods --- p.85 / Chapter 4.2.1 --- Preparation of experimental diets --- p.85 / Chapter 4.2.2 --- Feeding experiment --- p.88 / Chapter 4.2.3 --- Chemical analysis --- p.90 / Chapter 4.2.4 --- Statistical analysis --- p.90 / Chapter 4.3 --- Results and Discussion --- p.90 / Chapter 4.3.1 --- Growth response --- p.90 / Chapter 4.3.1.1 --- Growth --- p.91 / Chapter 4.3.1.2 --- Mortality --- p.95 / Chapter 4.3.2 --- Tissue chemical composition --- p.95 / Chapter 4.3.2.1 --- Nutritional contents --- p.97 / Chapter 4.3.2.2 --- Heavy metal contents --- p.97 / Chapter 4.4 --- Conclusions --- p.99 / Chapter Chapter 5 --- Worm Worked Bedding as Potting Media for Plant Growth --- p.103 / Chapter 5.1 --- Introduction --- p.103 / Chapter 5.2 --- Materials and Methods --- p.106 / Chapter 5.2.1 --- Preparation of potting media --- p.106 / Chapter 5.2.2 --- Chemical analysis of potting media --- p.106 / Chapter 5.2.3 --- Plant growth experiment --- p.107 / Chapter 5.2.4 --- Tissue analysis --- p.109 / Chapter 5.2.5 --- Statistical analysis --- p.109 / Chapter 5.3 --- Results and Discussion --- p.109 / Chapter 5.3.1 --- Chemical properties of potting media --- p.109 / Chapter 5.3.2 --- Plant growth status --- p.114 / Chapter 5.3.3 --- Heavy metal contents in plant tissues --- p.119 / Chapter 5.4 --- Conclusions --- p.125 / Chapter Chapter 6 --- General Conclusions --- p.126 / References --- p.130
37

Comparison of lignocellulose-degrading enzymes in lentinus edodes, pleurotus sajor-caju and volvariella volvacea.

January 1993 (has links)
Cai Yi Jin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1993. / Includes bibliographical references (leaves 118-128). / Chapter 1. --- Introduction / Chapter 1.1 --- Importance and Cultivation history of edible mushroom --- p.1 / Chapter 1.2 --- Variety and structure of growth substrates for mushroom --- p.4 / Chapter 1.3 --- Mushroom growth and substrate-degrading enzymes --- p.8 / Chapter 1.4 --- Purpose of study --- p.15 / Chapter 2. --- Methods and Materials / Chapter 2.1 --- Organisms --- p.17 / Chapter 2.2 --- Media --- p.17 / Chapter 2.3 --- Culture conditions --- p.21 / Chapter 2.3.1 --- Growth temperature --- p.21 / Chapter 2.3.2 --- Growth Studies --- p.21 / Chapter 2.3.2.1 --- Effect of pH on mycelial growth --- p.21 / Chapter 2.3.2.2 --- Effect of different carbon sources on mycelial growth --- p.21 / Chapter 2.3.2.3 --- Effect of lignin-related phenolic monomers and tannin derivatives on fungal growth --- p.22 / Chapter 2.3.3 --- Culture conditions for production of extracellular enzymes --- p.23 / Chapter 2.3.3.1 --- Tyrosinase --- p.23 / Chapter 2.3.3.2 --- Laccase --- p.23 / Chapter 2.3.3.3 --- Manganese-dependent Peroxidase and Lignin Peroxidase --- p.23 / Chapter 2.3.3.4 --- Cellulytic and Xylanolytic enzymes --- p.24 / Chapter 2.3.3.5 --- Lipase --- p.25 / Chapter 2.3.4 --- Culture conditions for studying properties of cellulases of V. volvacea --- p.26 / Chapter 2.3.4.1 --- CMCase --- p.26 / Chapter 2.3.4.2 --- "CMCase, FPase and β-Glucosidase" --- p.26 / Chapter 2.3.4.3 --- β-Glucosidase --- p.26 / Chapter 2.4 --- Enzyme assay --- p.27 / Chapter 2.4.1 --- Tyrosinase --- p.27 / Chapter 2.4.2 --- Laccase --- p.27 / Chapter a. --- o-Tolidine Method --- p.27 / Chapter b. --- ABTS Method --- p.28 / Chapter c. --- Syringaldazine Method --- p.28 / Chapter 2.4.3 --- Lignin peroxidase --- p.29 / Chapter 2.4.4 --- Manganese-dependent peroxidase --- p.29 / Chapter 2.4.5 --- Exoglucanase (avicelase) --- p.30 / Chapter 2.4.6 --- Endoglucanase (carboxymethylcellulase or CMCase) --- p.31 / Chapter 2.4.7 --- Filter paper digesting enzyme (FPase) --- p.32 / Chapter 2.4.8 --- P-Glucosidase --- p.32 / Chapter 2.4.9 --- Xylanase --- p.34 / Chapter 2.4.10 --- β-Xylosidase --- p.34 / Chapter 2.4.11 --- Lipase --- p.36 / Chapter 2.5 --- Other analytical methods --- p.36 / Chapter 2.5.1 --- Determination of phenol oxidase activity by the Bavendamm reaction --- p.36 / Chapter 2.5.2 --- Qualitative evaluation of CMCase by Congo red staining --- p.37 / Chapter 2.5.3 --- Effect of phenolic monomers and tannic acid on CMCase activity of V. volvacea --- p.38 / Chapter 2.5.4 --- Protein determination --- p.39 / Chapter 2.5.5 --- Non-denaturing gel electrophoresis pattern of fungal laccases --- p.39 / Chapter 2.6 --- Chemicals --- p.39 / Chapter 3. --- Results / Chapter 3.1 --- Growth and Nutritional characteristics --- p.44 / Chapter 3.1.1 --- Fungal growth on defined and non-defined culture media --- p.44 / Chapter 3.1.2 --- Effect of carbon source on fungal --- p.45 / Chapter 3.1.3 --- Effect of pH on fungal growth --- p.45 / Chapter 3.2 --- Effect of lignin-related phenolic monomers and tannin derivatives on fungal growth --- p.45 / Chapter 3.2.1 --- Effect of lignin-related phenolic monomers on fungal growth --- p.45 / Chapter 3.2.2 --- Effect of tannin derivatives on fungal growth --- p.61 / Chapter 3.3 --- Phenol Oxidase --- p.67 / Chapter 3.3.1 --- Phenol oxidase --- p.67 / Chapter 3.3.1.1 --- Guaiacol-reacting enzyme --- p.67 / Chapter 3.3.1.2 --- o-Anisidine oxidizing enzyme --- p.68 / Chapter 3.3.2 --- Tyrosinase --- p.69 / Chapter 3.3.3 --- Laccase --- p.69 / Chapter 3.3.3.1 --- "Laccase detected by o-Tolidine, ABTS Syringaldazine" --- p.69 / Chapter 3.3.3.2 --- Effect of pH on laccase activity --- p.69 / Chapter 3.4 --- Lignin-Transforming Enzymes --- p.73 / Chapter 3.4.1 --- Lignin peroxidase (LP) --- p.73 / Chapter 3.4.2 --- Manganese-dependent peroxidase (MnP) --- p.74 / Chapter 3.5 --- Cellulases --- p.78 / Chapter 3.5.1. --- Cellulases of V. volvacea --- p.78 / Chapter 3.5.1.1 --- Qualitative estimation of cellulose-degrading enzymes of V. volvacea grown on different substrates --- p.78 / Chapter 3.5.1.2 --- Influence of pH and temperature --- p.79 / Chapter 3.5.1.3 --- Cellulolytic activities in cultures grown on cellulose --- p.83 / Chapter 3.5.1.4 --- Cellulolytic activities in cultures grown on paddy straw --- p.91 / Chapter 3.5.1.5 --- β-Glucosidase activity in cultures grown on cellobiose --- p.91 / Chapter 3.5.1.6 --- Effect of lignin-related phenolic monomers and tannic acid on CMCase of V. volvacea --- p.95 / Chapter 3.5.2 --- Cellulases of P.sajor-caju --- p.96 / Chapter 3.5.3 --- Cellulases of L. edodes --- p.96 / Chapter 3.6 --- Xylanase --- p.96 / Chapter 3.6.1 --- "Xylanase of V. volvacea, strain V34" --- p.96 / Chapter 3.6.2 --- Xylanase of P.sajor-caju --- p.100 / Chapter 3.6.3 --- Xylanase of L. edodes --- p.100 / Chapter 3.7 --- Lipase of V. volvacea --- p.103 / Chapter 4. --- Discussion / Chapter 4.1. --- Carbon nutrition and pH for fungal growth --- p.104 / Chapter 4.1.1 --- Carbon nutrition --- p.104 / Chapter 4.1.2 --- pH --- p.104 / Chapter 4.2 --- "Effect of lignin-related phenolic monomers and tannin derivatives on fungal growth of L. edodes, P. sajor-caju and V, volvacea" --- p.105 / Chapter 4.2.1 --- Lignin-related phenolic monomers --- p.105 / Chapter 4.2.2 --- Tannin derivatives --- p.107 / Chapter 4.3 --- "Production of phenoloxidases by V. volvacea, L. edodes and P. sajor-caju" --- p.108 / Chapter 4.3.1 --- Guaiacol- and Anisidine reacting enzymes and Tyrosinase --- p.108 / Chapter 4.3.2 --- Laccase --- p.109 / Chapter 4.4. --- "Lignin-degrading Enzymes of V. volvacea, P. sajor-caju and L. edodes" --- p.110 / Chapter 4.5. --- "Cellulolytic and Hemicellulolytic Activity of V. volvacea, P.sajor-caju and L. edodes" --- p.113 / References --- p.118 / Appendix1 --- p.129
38

Effects of inoculum density, carbon concentration, and feeding scheme on the growth of transformed roots of Artemisia annua in a modified nutrient mist bioreactor

Towler, Melissa J. 05 May 2005 (has links)
Previous work has shown that despite the lack of oxygen limitation, transformed roots of Artemisia annua had lower biomass productivity in a nutrient mist bioreactor than in a liquid-phase bubble column reactor where the roots demonstrated metabolic signs of oxygen stress. Mathematical modeling suggested that the roots were too sparsely packed to capture mist particles efficiently and to achieve high growth rates. In this study, higher packing fractions were tested, and the growth rate increased significantly. Similarly, higher sucrose concentrations increased the growth rate. Growth kinetics for 2, 4, and 6 days showed an unexpected decrease or stationary growth rate after only 4 days for both 3% and 5% sucrose feeds. Residual media analyses indicated that carbon was not exhausted, nor were other major nutrients including phosphate. Increasing the misting frequency such that the total amount of carbon delivered from a 3% sucrose feed was equivalent to that delivered in a 5% sucrose feed showed that growth was affected by the modified cycle. These studies showed that both the concentration of carbon source and alteration of misting frequency can significantly increase growth rates of hairy roots in mist reactors.
39

Condicionadores em substratos para a formação de mudas de eucalipto com dois níveis de irrigação

Muraishi, Reginaldo Itiro [UNESP] 29 June 2012 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:31:02Z (GMT). No. of bitstreams: 0 Previous issue date: 2012-06-29Bitstream added on 2014-06-13T18:41:28Z : No. of bitstreams: 1 muraishi_ri_dr_jabo.pdf: 327992 bytes, checksum: 3e7f11e07323b7069fad291434242f79 (MD5) / O uso de vermiculita e polímeros agrícolas como condicionadores em substratos no Brasil têm contribuído para melhorar a germinação de sementes, desenvolvimento das plantas, além da redução das perdas de água de irrigação. O objetivo deste trabalho foi quantificar e estimar as misturas dos condicionadores em substratos de compostos orgânicos lixo e compostos orgânicos de poda de arvores e a redução da irrigação na produção de mudas de Eucalyptus citriodora Hook. Foram testados duas lâminas d´água (50% e 100% da evapotranspiração de referência medida pelo atmômetro) e 2 condicionadores no substrato em 3 concentrações (vermiculita 15%, 20% e 30% e polímeros 0,5%, 1,0% e 2,0% em volume), além de duas testemunhas que receberam 50% e 100% de irrigação. O experimento foi conduzido em delineamento blocos casualizados, com arranjo fatorial em três blocos e as médias comparadas pelo teste de Tukey a 5% de probabilidade. Foi avaliado o número de folhas, altura da planta, diâmetro do colo e massa de matéria seca. Da análise dos resultados em condição de produção de mudas, concluiu-se que a vermiculita apresentou resultado superior em irrigação com lâmina d’agua a 50% e a utilização de polímero a 0,5% sob lâmina d’agua 100% irrigação foi melhor tratamento para massa de matéria seca. Além disso, verificou-se que não é recomendável a utilização do polímero em doses acima de 0,5% e vermiculita acima de 15% / The use of vermiculite and polymers as conditioners for agricultural substrates in Brazil, have improved seed germination, plant development, and reduce losses of irrigation water. The objective of this study was to quantify and estimate mixtures of conditioners on substrates of organic compounds waste and organic compounds of trees pruning and reduction of irrigation in the production of seedling Eucalyptus citriodora Hook. It was tested the irrigation with two water depths with (50% and 100% of evapotranspiration by atmometer) measured and 2 conditioning in the substrate in 3 concentrations (vermiculite with 15%, 20% and 30% and polymers 0.5%, 1,0% and 2.0% by volume), besides two controls which received only 50% and 100% of irrigation. The experiment was conducted by a randomized block design with factorial arrangement, three blocks and the average was compared by Tukey test at 5% probability. Was evaluated the number of leaves, plant height, stem diameter and dry matter. Analysis of the results in conditions of seedlings production, it was concluded that the vermiculite showed superior results in a water irrigation with the use of 50% and the polymer application to 0.5% in a water irrigation, 100% better treatment for dry matter. Besides, it was found that it is not advisable to use of the polymer at doses above 0.5% and above 15% vermiculite
40

Substrato e irrigação em ora-pro-nóbis (Pereskia aculeata Mill.)

Andrade, Reginaldo Rodrigues de [UNESP] 07 December 2012 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:31:02Z (GMT). No. of bitstreams: 0 Previous issue date: 2012-12-07Bitstream added on 2014-06-13T19:40:46Z : No. of bitstreams: 1 andrade_rr_dr_jabo.pdf: 1800588 bytes, checksum: fecbd166fb4765e54b7def9d0d33a46c (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Resíduos orgânicos domiciliares ou industriais, são facilmente disponibilizados e podem, após compostagem, ser utilizados na composição de substratos alternativos de baixo custo e com grandes benefícios para a planta e para o ambiente. Hortaliças não convencionais, conhecidas popularmente por suas qualidades nutricionais, como a ora-pro-nóbis (Pereskia aculeata Mill.), começam a ser cultivadas no Brasil, de forma sistematizada, mas sem conhecimento comprovado das respostas de técnicas de cultivo, como as da irrigação e da utilização de composto orgânico. Por isso, procedeu-se ao cultivo de plantas de P. aculeata em vasos dentro de ambiente protegido, utilizando-se o método de estaquia caulinar. As variáveis de produção foram doses de composto orgânico no substrato (CO), oriundo da compostagem de resíduos orgânicos de origem industrial e agropecuária, do município de Uberlândia – MG, equivalentes a 0%, 15%, 30%, 45% e 60% do volume total do substrato e lâminas de irrigação (Li) correspondentes a 50%, 75% e 100% da evapotranspiração de referência (Et0), estimada por meio da equação de Penman-Monteith (FAO-56), com a utilização dos dados meteorológicos obtidos na estação automatizada da Universidade Federal de Uberlândia. O delineamento experimental foi o inteiramente casualizado (DIC) com 4 repetições. A irrigação foi realizada a cada 3 dias com a soma dos volumes de água calculados diariamente. Cento e vinte e dois dias após o plantio das estacas efetuou-se o corte das plantas e a determinação da massa seca em folhas, caules e raízes, e dos teores de proteína, cálcio (Ca) e ferro (Fe) nas folhas. Os resultados das análises estatísticas permitiram concluir que, excetuando-se para massa seca em raízes, houve interação entre as Li e as doses de CO para as demais variáveis. O aumento das... / Organic household or industrial waste, are easily available and can, after composting, be used in the composition of alternative substrates with low cost and great benefits for the plant and the environment. Unconventional vegetables, popularly known for its nutritional qualities, as Pereskia aculeata Mill., began to be cultivated in Brazil, in a systematic way, but without proven knowledge of growing techniques such as irrigation and use of organic compound. Therefore, we grow plants of P. aculeata in pots inside of a greenhouse, using the method of stem cuttings. Were broadly two the variables tested: doses of the organic compost in the substrate (CO), produced by composting organic waste from industry and agriculture in Uberlândia - MG, equivalent to 0%, 15%, 30%, 45% and 60% the total volume of the substrate; irrigation depths (Li) corresponding to 50%, 75% and 100% of the reference evapotranspiration (Et0) estimated with the FAO 56 Penman-Monteith equation, using meteorological data obtained at an automated station of the Federal University of Uberlândia. The experimental design was a completely randomized design with 4 replications. The irrigation was done every 3 days with the sum of the water volumes calculated daily. One hundred and twenty-two days after planting the plants were cut off and it was determined the dry masses of leaves, stems and roots, and the content of protein, calcium (Ca) and iron (Fe) in the leaves. The results of the statistical analyzes showed that, except for dry weight in roots, there was interaction between Li and CO levels for the other variables. The accumulation of... (Complete abstract click electronic access below)

Page generated in 0.058 seconds