• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • 1
  • 1
  • Tagged with
  • 20
  • 20
  • 11
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Nozzle Guide Vane Sweeping Jet Impingement Cooling

Agricola, Lucas 12 October 2018 (has links)
No description available.
12

Innovative Forced Response Analysis Method Applied to a Transonic Compressor

Hutton, Timothy M. January 2003 (has links)
No description available.
13

The Effect of Film Cooling on Nozzle Guide Vane Ash Deposition

Bonilla, Carlos Humberto 18 December 2012 (has links)
No description available.
14

The Effects of Upstream Boundary Layers on the NGV Endwall Cooling

Mao, Shuo 03 June 2022 (has links)
Modern gas turbine designs' ever-increasing turbine inlet temperature raises challenges for the nozzle guide vane cooling. Two typical endwall cooling schemes, jump cooling and louver cooling, result in different interactions between the injected coolant and the mainstream, leading to different cooling effects. This study investigates these two cooling schemes on the endwall cooling experimentally and numerically. Wind tunnel tests and the CFD simulations are carried out with engine-representative conditions of an exit Mach number of 0.85, an exit Reynolds number of 1.5×10^6, and an inlet Turbulence intensity of 16%. The jump cooling scheme experiments investigate two blowing ratios, 2.5 and 3.5, two density ratios, 1.2 and 1.95, and three endwall profiles with different NGV-turbine alignments. Four coolant mass flow ratios from 1.0% to 4.0% are tested for the louver cooling. The results show that the cavity vortex, the horseshoe vortex, and the passage vortex are the main factors that prevent the upstream coolant from reaching the NGV passage. The jump cooling scheme generally provides high momentum to the cooling jets. As a result, the coolant at the design case density ratio of 1.95 and blowing ratio of 2.5 is sufficiently energized to penetrate the horseshoe vortex. It then forms a relatively uniform coolant film near the NGV passage inlet, leading to a minimum adiabatic cooling effectiveness of 0.4 throughout the passage. Reducing the coolant density or increasing the blowing ratio leads to higher coolant momentum, so the coolant jets can further suppress the horseshoe vortex. However, high momentum may cause coolant lift-off, mitigating the coolant reattachment. Therefore, the density ratio needs to be carefully balanced with the blowing ratio to optimize the cooling effect. This balance is also affected by the combustor-NGV misalignment, as a higher step height requires higher coolant momentum to overcome the step-induced vortices. On the contrary, the louver cooling scheme provides less momentum to the coolant. The results showed that only by exceeding a coolant mass flow rate of 1~2% can the coolant form a uniform film which provides good coverage upstream of the NGV passage inlet. As for the cooling of the NGV passage, the mass flow rate ratio of the range investigated is not sufficient for desirable cooling performance. The pressure side endwall proves most difficult for the coolant to reach. In addition, the fishmouth cavity at the combustor-NGV passage causes a three-dimensional cavity vortex that transports the coolant in the pitch-wise direction. Moreover, the coolant transport pattern is dependent on the coolant blow rate. Overall, the more-energized coolant film generated by the jump cooling tends to survive longer, but it is also more prone to lift-off. At the same time, the less-energized coolant film caused by the louver cooling is more susceptible to vortices and the discontinuity of the endwall geometry. However, it develops faster, especially in the lateral direction. The two schemes could be applied simultaneously for an ideal cooling system. The jump cooling can provide enough momentum for the coolant to persist in the NGV passage. Meanwhile, the louver cooling covers the upstream region before the jump cooling coolant reattaches to the endwall. / Doctor of Philosophy / Gas turbines, sometimes called combustion turbines, are widely used to generate power or propulsion for various applications. The three main components of a gas turbine are compressor, combustor, and turbine. Modern gas turbines run at a high turbine inlet temperature that exceeds the current metal limits to increase efficiency. However, this brings significant challenges to the cooling of the first stage of the turbine, the nozzle guide vane. In this research, two commonly used endwall cooling methods, jump cooling and louver cooling, are investigated under engine-representative conditions experimentally and numerically. In addition, flow physics is demonstrated to explain the endwall cooling performance, mainly the upstream boundary layer caused by the interaction between the mainstream and the coolant flow. The results show that the cavity vortex, the horseshoe vortex, and the passage vortex are the main factors that prevent the upstream coolant from reaching the NGV passage. The jump cooling scheme provides high momentum to the cooling jets. As a result, the coolant in the design case is sufficiently energized to penetrate the horseshoe vortex, providing a desirable cooling effect in the NGV passage. Reducing the density ratio or increasing the blowing ratio can help the coolant jets further suppress the horseshoe vortex but also causes more lift-off, which adversely affects the cooling performance. On the contrary, the louver cooling scheme provides less momentum to the coolant, forming a less energized coolant film. The lack of coolant causes the louver coolant film to provide good coverage immediately downstream of the louver scheme exit. However, due to unfavorable interaction with vortices and endwall discontinuity, the cooling effect decays quickly downstream. Overall, the more-energized coolant film generated by the jump cooling tends to survive longer, but it is also more prone to lift-off. At the same time, the less-energized coolant film caused by the louver cooling is more susceptible to vortices and the discontinuity of the endwall geometry. However, it develops faster, especially in the lateral direction. The two schemes could be applied simultaneously for an ideal cooling system to work mutually beneficially.
15

Numerical and Experimental Investigations of Design Parameters Defining Gas Turbine Nozzle Guide Vane Endwall Heat Transfer

Rubensdörffer, Frank G. January 2006 (has links)
The primary requirements for a modern industrial gas turbine consist of a continuous trend of an increasing efficiency combined with very low emissions in a robust, cost-effective manner. To fulfil these tasks a high turbine inlet temperature together with advanced dry low NOX combustion chambers are employed. These dry low NOX combustion chambers generate a rather flat temperature profile compared to previous generation gas turbines, which have a rather parabolic temperature profile before the nozzle guide vane. This means that the nozzle guide vane endwall heat load for modern gas turbines is much higher compared to previous generation gas turbines. Therefore the prediction of the nozzle guide vane flow field and endwall heat transfer is crucial for the engineering task of the design layout of the vane endwall cooling system. The present study is directed towards establishing new in-depth aerodynamic and endwall heat transfer knowledge for an advanced nozzle guide vane of a modern industrial gas turbine. To reach this objective the physical processes and effects which cause the different flow fields and the endwall heat transfer pattern in a baseline configuration, a combustion chamber variant, a heat shield variant without and with additional cooling air and a cavity variant without and with additional cooling air have been investigated. The variants, which differ from the simplified baseline configuration, apply design elements which are commonly used in real modern gas turbines. This research area is crucial for the nozzle guide vane endwall heat transfer, especially for the advanced design of the nozzle guide vane of a modern industrial gas turbine and has so far hardly been investigated in the open literature. For the experimental aerodynamic and endwall heat transfer research of the baseline configuration of the advanced nozzle guide vane geometry a new low pressure, low temperature test facility has been developed, designed and constructed, since no experimental heat transfer data exist in the open literature for this type of vane configuration. The new test rig consists of a linear cascade with the baseline configuration of the advanced nozzle guide vane geometry with four upscaled airfoils and three flow passages. For the aerodynamic tests the two middle airfoils and the hub and the tip endwall are instrumented with pressure taps to monitor the Mach number distribution. For the heat transfer tests the temperature distribution on the hub endwall is measured via thermography. The analysis of these measurements, including comparisons to research in the open literature shows that the new test rig generates accurate and reproducible results which give confidence that it is a reliable tool for the experimental aerodynamic and heat transfer research on the advanced nozzle guide vane of a modern industrial gas turbine. Previous own research work together with the numerical analysis performed in another part of the project as well as conclusions from a detailed literature study lead to the conclusion that advanced Navier-Stokes CFD tools with the v2-f turbulence model are most suitable for the calculation of the flow field and the endwall heat transfer of turbine vanes and blades. Therefore this numerical tool, validated against different vane and blade geometries and for different flow conditions, has been chosen for the numerical aerodynamic and endwall heat transfer research of the advanced nozzle guide vane of a modern industrial gas turbine. The evaluation of the numerical and experimental investigations of the baseline configuration of the advanced design of a nozzle guide vane shows the flow field of an advanced mid-loaded airfoil design with the features to reduce total airfoil losses. For the hub endwall of the baseline configuration of the advanced design of a nozzle guide vane the flow characteristics and heat transfer features of the classical vane endwall secondary flow model can be detected with a very weak intensity and geometric extension compared to the studies of less advanced vane geometries in the open literature. A detailed analysis of the numerical simulations and the experimental data showed very good qualitative and quantitative agreement for the three-dimensional flow field and the endwall heat transfer. These findings, together with the evaluations obtained from the open literature, lead to the conclusions that selected CFD software Fluent together with the applied v2-f turbulence model exhibits a high level of general applicability and is not tuned to a special vane or blade geometry. Therefore the CFD code Fluent with the v2-f turbulence model has been selected for the research of the influence of the several geometric variants of the baseline configuration on the flow field and the hub endwall heat transfer of the advanced nozzle guide vane of a modern industrial gas turbine. Most of the vane endwall heat transfer research in the open literature has been carried out only for baseline configurations of the flow path between combustion chamber and nozzle guide vane. Such a simplified geometry consists of a long, planar undisturbed approach length upstream of the nozzle guide vane. The design of real modern industrial gas turbines however requires often significant variations from this baseline configuration consisting of air-cooled heat shields and purged cavities between the combustion chamber and the nozzle guide vane. A detailed evaluation of the flow field and the endwall heat transfer shows major differences between the baseline and the heat shield configuration. The heat shield in front of the airfoil of the nozzle guide vane influences the secondary flow field and the endwall heat transfer pattern strongly. Additional cooling air, released under the heat shield has a distinctive influence as well. Also the cavity between the combustion chamber and the nozzle guide vane affects the secondary flow field and the endwall heat transfer pattern. Here the influence of additional cavity cooling air is more decisive. The results of the detailed studies of the geometric variants are applied to formulate guidelines for an optimized design of the flow path between the combustion chamber and the nozzle guide vane and the nozzle guide vane endwall cooling configuration of next-generation industrial gas turbines. / QC 20100917
16

Řešení dynamické odezvy vodohospodářských konstrukcí v interakci s kapalinou / The solution of dynamic response of hydraulic steel structures interacting with fluid

Feilhauer, Michal January 2017 (has links)
Behaviour prediction of hydraulic steel structures with the view to surrounding influences in various design dispositions is a fundamental condition for operational reliability assessment of the analyzed construction. Reliable characteristics of construction behaviour defined by the specification of its movement within changes caused by time and environmental influences is of great importance. In currently used engineering mechanics formulation it concerns setting the response of the defined construction or its part to the given time variable mechanic load. Required response values, which are necessary for evaluation terminal dispositions of capacity and usability of the construction, are trans-location and tension, or values thence derived. Calculation is basic means for response prediction of construction. The thesis presented deals with complex multi-physical behaviour problems of water supply constructions in fluid structure interaction. There are presented various approaches to calculations of static and dynamic qualities of constructions. These approaches are divided into so called “direct method”, which is based on direct connection between two physical fields and the calculation is performed by the method of final elements, and so called “indirect method” , which is based on connection of two physical fields by means of various interfaces, which are described in this thesis. In case of indirect method, the calculation of running liquid is performed by the method of final volumes and the construction calculation is performed by the method of final elements. Within the scope of this thesis, static and dynamic responses of water supply constructions have been solved with the use of the above mentioned approaches. The results of the calculations in the scope of this thesis have been compared with the findings of performed experiments. The final part of the thesis describes the results and generalized findings gathered from the tasks by various approaches.
17

Investigating Turbine Vane Trailing Edge Pin Fin Cooling in Subsonic and Transonic Cascades

Asar, Munevver Elif 09 July 2019 (has links)
No description available.
18

Sweeping Jet Film Cooling

Hossain, Mohammad Arif 21 September 2020 (has links)
No description available.
19

CFD Based External Heat Transfer Coefficient Predictions on a Transonic Film-Cooled Gas Turbine Guide Vane : A Computational Fluid Dynamics Study on the Von Karman Institute LS94 Test Case

Johnsson, Rosalie, Asiegbu, Lilian January 2022 (has links)
The turbine inlet guide vanes of a gas-turbine are subjected to extreme hot gas temperatures which increases the risk of mechanical failure and overall reduces the component lifespan. Hence, it is of great interest for gas-turbine manufacturers to establish methods for accurately estimating the temperature distribution along the vane surface. Due to the three-dimensional nature of turbine flow, it is of interest to establish Computational Fluid Dynamics (CFD) methodology which capture these three-dimensional effects. This thesis is one in a collection of theses conducted at Siemens Energy AB on the subject. Previous studies have investigated and validated the implementation of RANS simulations on non-cooled turbine vanes and endwalls. In this study, the focus is on studying a film cooled vane and establishing one RANS as well as one hybrid modelling strategy for heat transfer coefficient (HTC) predictions. The HTC prediction capabilities are compared and validated against experimental data presented in the doctoral thesis by Fabrizio Fontaneto on the LS94 vane at Von Karman Institute. The chosen RANS modelling method was the Shear Stress Transport (SST) k-ω turbulence model, with γ-Reθ transition modelling, based on the findings by Enico (2021) and Daugulis (2022). The model proved capable in estimating the HTC well on mainly the suction side of the vane. The pressure side HTC was largely under-predicted, a common issue with the SST model also seen in the previous theses as well as the hybrid simulations. The strength of the SST k-ω turbulence model, with γ-Reθ transition modelling, is in accurately capturing the HTC magnitude, most likely due to the well-predicted turbulence intensity decay at the inlet. However, it largely under-predicts the HTC along the suction side film-coolant layer, implying that it may be over-estimating the film-cooling capabilities. The hybrid model chosen was the Scale Resolving Hybrid (SRH) model, with underlying RANS SST k-ω. Compared to RANS, hybrid results were under-estimated, seemingly offset from the experimental data by a constant 200 units along the entire vane midspan. This is likely due to the inaccurate turbulence intensity presented in the SRH simulations, which decays quickly along the inlet compared to RANS and experimental data. Yet still, the hybrid model showed potential in capturing certain results not seen with RANS, such as the secondary flow effects by the vane endwalls, as well as arguably capturing the general HTC trend at midspan seen in the experimental data. Additionally, the section of severely under-predicted HTC by the suction side film-coolant seen with RANS is not present in the hybrid results. Although the hybrid model has proven promising in many aspects, in its current state it is not a viable method for HTC predictions due to its general under-prediction of HTC. Largely, the authors suspect this is due to the undesirably coarse mesh around the cooling holes, which leads to RANS computation in regions where SRH is desired. Thus, improvements would need to be made to the model, where, for example, implementing a zonal hybrid RANS-LES model would be an option. Considering the hybrid model in its current state, RANS is the preferred method, especially when considering the greater computational cost and the labor associated with hybrid simulations which were experienced during this study. In conclusion, it is evident that the correct capture of inlet turbulence intensity decay as well as suitable mesh refinement by the cooling holes are crucial for obtaining the correct magnitudes of HTC, and thus, the capture of it should be of utmost priority in future work within the field.
20

Heat Transfer and Film Cooling Performance on a Transonic Converging Nozzle Guide Vane Endwall With Purge Jet Cooling and Dual Cavity Slashface Leakage

Van Hout, Daniel Richard 06 November 2020 (has links)
The following study presents an experimental and computational investigation on the effects of implementing a dual cavity slashface configuration and varying slashface coolant leakage mass flow rate on the thermal performance for a 1st stage nozzle guide vane axisymmetric converging endwall. An upstream doublet staggered cylindrical hole jet cooling scheme provides additional purged coolant with consistent conditions throughout the investigation. The effects are measured in engine representative transonic mainstream and coolant flow conditions where Mexit = 0.85, Reexit = 1.5 × 106, freestream turbulence intensity of 16%, and a coolant density ratio of 1.95. Four combinations of slashface Fwd and Aft cavity mass flow rate are experimentally analyzed by comparing key convective heat transfer parameters. Data is collected and reduced using a combination of IR thermography and a linear regression technique to map endwall heat transfer performance throughout the passage. A flow visualization study is employed using 100 cSt oil-based paint to gather qualitative insights into the endwall flow field. A complimentary CFD study is carried out to gather additional understanding of the endwall flow ingestion and egression behavior as well as comparing performance against a conventional cavity configuration. Experimental comparisons indicate slashface mass flow rate variations have a minor effect on passage film cooling coverage. Instead, coolant coverage across the passage is primarily driven by upstream purge coolant. However, endwall heat transfer coefficient is reduced as much as 20% in mid-passage areas as leakage flow decreases. This suggests that changes in leakage flow maintains a first order correlation in altering passage aerodynamics that, despite relatively consistent film cooling coverage, also leads to significant changes in net heat flux reduction in the passage. Endwall flow behavior proves to be complex along the gap interface showing signs of ingestion, egression, and tangential flow varying spatially throughout the gap. CFD comparisons suggests that a dual cavity configuration varies the gap static pressure distribution closer to the mainstream pressure throughout the passage in high speed applications compared to a single cavity configuration. The resulting decelerating flow creates a more stable endwall flow profile and favorable coolant environment by reducing boundary layer thinning and shear interaction in near gap endwall tangential flow. / Master of Science / Gas turbines are often exposed to high temperatures as they convert hot, energetic gas streams into mechanical motion. As turbines receive higher temperature gases, their efficiency increases and reduces waste. However, these temperatures can get too hot for turbine parts. To survive these high temperatures, turbine components are often assembled with a gap in between to allow the part to expand and contrast when it heats and cools. Relatively cold air is also fed into the gap to help prevent hot gases from entering. This cold air can also feed into other pathways to flow onto the turbine component's surface and act as an insulating layer to the hot gas and protect the component from overheating. The study presented investigates an assembly gap, referred to as a slashface gap, found in the middle of a vane located immediately after gas combustion with cold air leaking through. One unique aspect of this study is that there are two pathways for cold air, or coolant, to leak through when, typically, there is only one. The slashface gap lies on a wall which the vanes are attached to, referred to as the endwall. Multiple small holes on the endwall in between the combustor and vanes jet out coolant to try and protect the endwall from hot gases. These holes, called jump cooling holes, point out towards the vanes and angled more shallowly so that the holes do not face directly up from the endwall. The holes are angled as they are meant to gracefully spray coolant to cover and insulate the endwall instead of mixing with the hot air above. The experiments found that changing how much coolant is leaked through the slashface has little effect on how much coolant from jump cooling holes covered the endwall. However, smaller slashface leaks better protect the endwall from the hot gas by forcing it to move smoother and give off less heat across the endwall rather than a tumbling like manner. The experiment is modeled on a computer simulation to determine the differences of a slashface gap with the typical one coolant pathway and the coolant dual pathway configuration that is tested in the experiments. This simulation discovered that having two coolant pathways significantly reduces how much hot gas and jump cooling coolant enters and leaves the slashface gap. This makes the surrounding airflow along the endwall travel more smoothly and does not give off as much heat as if a single coolant pathway configuration is used instead.

Page generated in 0.0709 seconds