• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 45
  • 22
  • 5
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 175
  • 175
  • 175
  • 64
  • 61
  • 41
  • 37
  • 35
  • 27
  • 26
  • 24
  • 24
  • 23
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Local heat transfer in a mixing vessel using heat flux sensors

Haam, Seungjoo January 1990 (has links)
No description available.
2

A Study on Gas Quench Steel Hardenability

Lu, Yuan 21 January 2015 (has links)
Gas quench technology has been rapidly developed recently with the intent to replace water and oil quench for medium and high hardenability steel. One of the significant advantages is to reduce the distortion and stress, compared to water and oil quench. However, not like liquid quench, no gas quench steel hardenability test standard exists. The fundamental difference between liquid quench and gas quench is heat transfer coefficient. The workpiece with the same hardness after liquid and gas quench process may have different microstructure due to different cooling curves. The concept of equivalent gas quench heat transfer coefficient (HTC) is proposed to have the same cooling curve, microstructure and hardness when compared with liquid quench. Several influencing factors on steel hardenability have been discussed, such as austenizing temperature, heating rate, holding time, composition variation and grain size difference. The phase quantification by X-ray Diffraction and Rietveld Refinement method is developed to measure phase percentage for steel microstructure, including martensite, ferrite and carbides. The limitations and improvements of modified Jominy gas quench test are discussed. The fundamental limitation of Jominy gas quench test is that one gas quench condition cannot be used for both low hardenability steel and high hardenability steel at the same time. The same steel grade would have different hardenability curves under different gas quench conditions, which made it difficult to compare the hardenability among different steels. The critical HTC test based on Grossmann test is proposed to overcome the limitations. In the test, different gas quench HTC conditions are applied to the sample with the same geometry. After sectioning each bar at mid-length, the bar that has 50% martensite at its center is selected, and the applied gas quench HTC of this bar is designated as the critical HTC. This test has many advantages to take the place of modified Jominy gas quench test. Since one of the advantages of gas quench is greater process flexibility to vary cooling rates, gas marquenching technology is proposed to obtain martensite with less sever cooling rate and reduce the distortion and stress.
3

Steam-reheat option for supercritical-water-cooled reactors

Saltanov, Eugene 01 December 2010 (has links)
SuperCritical-Water-cooled Reactors (SCWRs) are being developed as one of the Generation-IV nuclear-reactor concepts. Main objectives of the development are to increase thermal efficiency of a Nuclear Power Plant (NPP) and to decrease capital and operational costs. The first objective can be achieved by introducing nuclear steam reheat inside a reactor and utilizing regenerative feedwater heaters. The second objective can be achieved by designing a steam cycle that closely matches that of the mature supercritical fossil-fuelled power plants. The feasibility of these objectives is discussed. As a part of this discussion, heat-transfer calculations have been performed and analyzed for SuperCritical-Water (SCW) and SuperHeated-Steam (SHS) channels of the proposed reactor concept. In the calculations a uniform and three non-uniform Axial Heat Flux Profiles (AHFPs) were considered for six different fuels (UO2, ThO2, MOX, UC2, UC, and UN) and at average and maximum channel power. Bulk-fluid, sheath, and fuel centerline temperatures as well as the Heat Transfer Coefficient (HTC) profiles were obtained along the fuel-channel length. The HTC values are within a range of 4.7 – 20 kW/m2⋅K and 9.7 – 10 kW/m2⋅K for the SCW and SHS channels respectively. The main conclusion is that while all the mentioned fuels may be used for the SHS channel, only UC2, UC, or UN are suitable for a SCW channel, because their fuel centerline temperatures are at least 1000°C below melting point, while that of UO2, ThO2, and MOX may reach melting point. / UOIT
4

Estimation of thermal properties of randomly packed bed of silicagel particles using IHTP method

2013 December 1900 (has links)
Accurate values of thermophysical transport properties of particle beds are necessary to accurately model heat and mass transfer processes in particle beds that under-go preferred processes and changes. The objective of this study is to use a proven analytical/numerical methodology to estimate the unknown transport properties within test cells filled with silicagel particles and compare the results with the previously published data. An experimental test cell was designed and constructed to carry out transient heat transfer tests for both step change conduction and convection heat transfer within a packed bed of silicagel particles. For a known step change in the test cell temperature boundary condition, the temporal temperature distribution within the bed during heat conduction depends only on the effective heat conduction coefficient and the thermal capacity of the particle bed. The central problem is to, using only the boundary conditions and a few time-varying temperature sensors in the test cell of particles, determine the effective thermal conductivity of the test bed and specify the resulting measurement uncertainty. A similar problem occurs when the heat convection coefficient is sought after a step change in the airflow inlet temperature for the test cell. These types of problems are known as inverse heat transfer problems (IHTP). In this thesis, IHTP method was used to estimate the convective heat transfer coefficient. Good agreement was seen in experimental and numerical temperature profiles, which were modeled by using the estimated convective heat transfer coefficient. The same methodology was used to estimate the effective thermal conductivity of the particle bed. Comparison between the experimental temperature distribution and numerical temperature distribution, which was modeled by using the estimated effective conductivity, illustrated good agreement. On the other side, applying the effective thermal conductivity, obtained from a direct steady state measurement, in the numerical simulation could not present agreement between the numerical and experimental results. It was concluded that the IHTP methodology was a successful approach to find the thermophysical properties of the particle beds, which were hard to measure directly.
5

Conjugate Heat Transfer and Average Versus Variable Heat Transfer Coefficients

Macbeth, Tyler James 01 March 2016 (has links)
An average heat transfer coefficient, h_bar, is often used to solve heat transfer problems. It should be understood that this is an approximation and may provide inaccurate results, especially when the temperature field is of interest. The proper method to solve heat transfer problems is with a conjugate approach. However, there seems to be a lack of clear explanations of conjugate heat transfer in literature. The objective of this work is to provide a clear explanation of conjugate heat transfer and to determine the discrepancy in the temperature field when the interface boundary condition is approximated using h_bar compared to a local, or variable, heat transfer coefficient, h(x). Simple one-dimensional problems are presented and solved analytically using both h(x) and h_bar. Due to the one-dimensional assumption, h(x) appears in the governing equation for which the common methods to solve the differential equations with an average coefficient are no longer valid. Two methods, the integral equation and generalized Bessel methods are presented to handle the variable coefficient. The generalized Bessel method has previously only been used with homogeneous governing equations. This work extends the use of the generalized Bessel method to non-homogeneous problems by developing a relation for the Wronskian of the general solution to the generalized Bessel equation. The solution methods are applied to three problems: an external flow past a flat plate, a conjugate interface between two solids and a conjugate interface between a fluid and a solid. The main parameter that is varied is a combination of the Biot number and a geometric aspect ratio, A_1^2 = Bi*L^2/d_1^2. The Biot number is assumed small since the problems are one-dimensional and thus variation in A_1^2 is mostly due to a change in the aspect ratio. A large A_1^2 represents a long and thin solid whereas a small A_1^2 represents a short and thick solid. It is found that a larger A_1^2 leads to less problem conjugation. This means that use of h_bar has a lesser effect on the temperature field for a long and thin solid. Also, use of ¯ over h(x) tends to generally under predict the solid temperature. In addition is was found that A_2^2, the A^2 value for the second subdomain, tends to have more effect on the shape of the temperature profile of solid 1 and A_1^2 has a greater effect on the magnitude of the difference in temperature profiles between the use of h(x) and h_bar. In general increasing the A^2 values reduced conjugation.
6

Effect of vapor velocity during condensation on horizontal finned tubes

Hopkins, Charles Louis III 12 1900 (has links)
Approved for public release; distribution is unlimited / Heat-transfer measurements were made for condensation of R-113 and steam on a smooth tube and on three finned tubes with rectangular shape fins. These tubes had a fin height and width of 1.0 mm and spacings of 0.25, 1.5, and 4.0 mm (tubes A, B, and C respectively) . Data were taken by increasing the vapor velocity from 0.4 to 1.9 m/s for R-113 and 4.8 to 31.3 m/s for steam. For both fluids, the improvement of the condensing heat-transfer coefficient with vapor velocity was smaller for the finned tubes than for the smooth tube. For R-113, the smooth tube experienced a 32 percent improvement with vapor velocity, where the finned tubes (tubes A, B and C respectively) experienced improvements of only 0, 5 and 10 percent. For steam, the smooth tube experienced a 62 percent improvement, whereas the finned tubes (tubes A, B, and C respectively) experienced improvements of only 31, 11, and 9 percent. These test results show that, although finned tubes can provide significant heat transfer enhancement over smooth tubes at low vapor velocities, the degree of enhancement becomes smaller as vapor velocity increases. / CBT-8603582 (NSF) / http://archive.org/details/effectofvaporvel00hopk / National Science Foundation / Lieutenant Commander, United States Navy
7

Onset of Flow Instability in Uniformly Heated, Narrow, Rectangular Channels

Becht, Charles 09 May 2007 (has links)
The primary purpose of this investigation was to experimentally determine the effect of operational parameters on the onset of flow instability (OFI) in narrow, uniformly heated, vertical, rectangular channels. The geometry investigated was a 9.0 cm long rectangular channel with a 1.0mm by 1.3cm cross section. This geometry closely matches the coolant channel geometry in an accelerator target. Nitrogen-saturated subcooled water was used as the coolant, with mass fluxes ranging from 250 to 1336 kg/m^2 s, and an inlet temperature of 26ºC for the OFI experiments. The exit pressures investigated ranged from 275kPa to 620kPa, while the heat flux ranged from 0.729 to 2.236 MW/m^2. The primary data collected from these experiments were used to develop two correlations for the heat flux and mass flux at OFI. Wall temperature data were also collected in order to develop a Nusselt number correlation for the single-phase regime. This correlation is valid for the Reynolds number range of 6x103 to 1.7x104. The data obtained in this investigation will aid designers of high-power-density systems establish design limits to prevent over heating and possible damage due to the onset of flow instability. The data obtained in this investigation will aid designers of high-power-density systems establish design limits to prevent over heating and possible damage due to the onset of flow instability.
8

none

Wu, Shui-shun 08 August 2008 (has links)
This paper starts from the single tube condensation theory of shell side inferred by Nusselt , and then analyzes the coefficient of heat transfer of the shell side and the overall heat transfer coefficient of the tube bundle. Referring to the overall heat coefficient of surface condensers and the calculation means of pressure decrease, the HEI, the most exploited one in the commerce is used by combining the basic theory of condenser heat transfer based on the Delphi function language to develop a set of assistant designing software. The software can be used to evaluate the performance of condensers, calculate the sizes of tube materials, and predict the pressure of condensers when the different tube materials are used. When the units are in using, this software also can calculate the cleanliness factor and determine the suitable time to clean the condenser tubes. There are four common used tube materials to compare their performance. They are Al- Brass tubes, 70-30 Cu-Ni tubes, Sea-Cure tubes and Ti tubes. This paper use the software to analyze the performance of the heat transfer of these four different kinds of tube materials and also to calculate the sizes of tubes .And use research papers to analyze the reason of anti-corrosion of these four. In addition, the HEI method can analyze the anti-vibration ability of these four. After comparing with all the performance of the tube materials, and then choosing the best tube material to provide an example for condenser design of new electricity plants or for old electricity plants to change the tube materials.
9

A supercritical R-744 heat transfer simulation implementing various Nusselt number correlations / Philip van Zyl Venter.

Venter, Philip van Zyl January 2010 (has links)
During the past decade research has shown that global warming may have disastrous effects on our planet. In order to limit the damage that the human race seems to be causing, it was acknowledged that substances with a high global warming potential (GWP) should be phased out. In due time, R-134a with a GWP = 1300, may probably be phased out to make way for nature friendly refrigerants with a lower GWP. One of these contenders is carbon dioxide, R-744, with a GWP = 1. Literature revealed that various Nusselt number (Nu) correlations have been developed to predict the convection heat transfer coefficients of supercritical R-744 in cooling. No proof could be found that any of the reported correlations accurately predict Nusselt numbers (Nus) and the subsequent convection heat transfer coefficients of supercritical R-744 in cooling. Although there exist a number of Nu correlations that may be used for R-744, eight different correlations were chosen to be compared in a theoretical simulation program forming the first part of this study. A water-to-transcritical R-744 tube-in-tube heat exchanger was simulated. Although the results emphasise the importance of finding a more suitable Nu correlation for cooling supercritical R-744, no explicit conclusions could be made regarding the accuracy of any of the correlations used in this study. For the second part of this study experimental data found in literature were used to evaluate the accuracy of the different correlations. Convection heat transfer coefficients, temperatures, pressures and tube diameter were employed for the calculation of experimental Nusselt numbers (Nuexp). The theoretical Nu and Nuexp were then plotted against the length of the heat exchanger for different pressures. It was observed that both Nuexp and Nu increase progressively to a maximal value and then decline as the tube length increases. From these results it were possible to group correlations according to the general patterns of their Nu variation over the tube length. Graphs of Nuexp against Nus, calculated according to the Gnielinski correlation, generally followed a linear regression, with R2 > 0.9, when the temperature is equal or above the pseudocritical temperature. From this data a new correlation, Correlation I, based on average gradients and intersects, was formulated. Then a modification on the Haaland friction factor was used with the Gnielinski correlation to yield a second correlation, namely Correlation II. A third and more advanced correlation, Correlation III, was then formulated by employing graphs where gradients and y-intercepts were plotted against pressure. From this data a new parameter, namely the turning point pressure ratio of cooling supercritical R-744, was defined. It was concluded that the employed Nu correlations under predict Nu values (a minimum of 0.3% and a maximum of 81.6%). However, two of the correlations constantly over predicted Nus at greater tube lengths, i.e. below pseudocritical temperatures. It was also concluded that Correlation III proved to be more accurate than both Correlations I and II, as well as the existing correlations found in the literature and employed in this study. Correlation III Nus for cooling supercritical R-744 may only be valid for a diameter in the order of the experimental diameter of 7.73 mm, temperatures that are equal or above the pseudocritical temperature and at pressures ranging from 7.5 to 8.8 MPa. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2010.
10

A supercritical R-744 heat transfer simulation implementing various Nusselt number correlations / Philip van Zyl Venter.

Venter, Philip van Zyl January 2010 (has links)
During the past decade research has shown that global warming may have disastrous effects on our planet. In order to limit the damage that the human race seems to be causing, it was acknowledged that substances with a high global warming potential (GWP) should be phased out. In due time, R-134a with a GWP = 1300, may probably be phased out to make way for nature friendly refrigerants with a lower GWP. One of these contenders is carbon dioxide, R-744, with a GWP = 1. Literature revealed that various Nusselt number (Nu) correlations have been developed to predict the convection heat transfer coefficients of supercritical R-744 in cooling. No proof could be found that any of the reported correlations accurately predict Nusselt numbers (Nus) and the subsequent convection heat transfer coefficients of supercritical R-744 in cooling. Although there exist a number of Nu correlations that may be used for R-744, eight different correlations were chosen to be compared in a theoretical simulation program forming the first part of this study. A water-to-transcritical R-744 tube-in-tube heat exchanger was simulated. Although the results emphasise the importance of finding a more suitable Nu correlation for cooling supercritical R-744, no explicit conclusions could be made regarding the accuracy of any of the correlations used in this study. For the second part of this study experimental data found in literature were used to evaluate the accuracy of the different correlations. Convection heat transfer coefficients, temperatures, pressures and tube diameter were employed for the calculation of experimental Nusselt numbers (Nuexp). The theoretical Nu and Nuexp were then plotted against the length of the heat exchanger for different pressures. It was observed that both Nuexp and Nu increase progressively to a maximal value and then decline as the tube length increases. From these results it were possible to group correlations according to the general patterns of their Nu variation over the tube length. Graphs of Nuexp against Nus, calculated according to the Gnielinski correlation, generally followed a linear regression, with R2 > 0.9, when the temperature is equal or above the pseudocritical temperature. From this data a new correlation, Correlation I, based on average gradients and intersects, was formulated. Then a modification on the Haaland friction factor was used with the Gnielinski correlation to yield a second correlation, namely Correlation II. A third and more advanced correlation, Correlation III, was then formulated by employing graphs where gradients and y-intercepts were plotted against pressure. From this data a new parameter, namely the turning point pressure ratio of cooling supercritical R-744, was defined. It was concluded that the employed Nu correlations under predict Nu values (a minimum of 0.3% and a maximum of 81.6%). However, two of the correlations constantly over predicted Nus at greater tube lengths, i.e. below pseudocritical temperatures. It was also concluded that Correlation III proved to be more accurate than both Correlations I and II, as well as the existing correlations found in the literature and employed in this study. Correlation III Nus for cooling supercritical R-744 may only be valid for a diameter in the order of the experimental diameter of 7.73 mm, temperatures that are equal or above the pseudocritical temperature and at pressures ranging from 7.5 to 8.8 MPa. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2010.

Page generated in 0.0877 seconds