• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Guidance Laws For Impact Angle Constraints And Exo-Atmospheric Engagements

Ratnoo, Ashwini 02 1900 (has links)
This thesis deals with development of guidance laws for advanced applications. Two class of guidance problems, namely, impact angle constrained guidance and pulsed guidance for exo-atmospheric engagements, are considered here. Three impact angle constrained guidance schemes are developed using (i) Proportional navigation guidance (PNG), (ii) State Dependent Riccati Equation (SDRE) technique and (iii) geometric concepts, respectively. A collision course based pulsed guidance law is presented for exo-atmospheric interceptors. Proportional Navigation Guidance (PNG) law is the most widely used guidance law because of its ease of implementation and efficiency. However, in its original form, it achieves only a limited set of impact angles. A two stage PNG law is presented for achieving all impact angles against a stationary target. In the first phase of guidance, an orientation PNG command is used. The orientation navigation constant (N ) is a function of the initial engagement geometry and has a lower value (N less than 2). It is proved that following the orientation trajectory, the interceptor can switch to N = 2 and achieve the desired impact angle. Simulations, with a constant speed and with a realistic interceptor model, show successful interception of the target with all desired impact angles. Feedback implementation of the guidance law results in negligible errors in impact angle with uncompensated autopilot delays. The idea of a two-stage PNG law with impact angle constraint is further used to develop a guidance law for intercepting moving targets. Following the orientation trajectory, the interceptor can switch to N = 3 and achieve the desired impact angle. It is proved that the guidance achieves all impact angles in a surface-to-surface engagement scenario with receding and approaching targets, respectively. In a air-to-surface engagement scenario, it is proved that the guidance law achieves all impact angles in a deterministic set. Constant speed and realistic interceptor models are used for simulations. Results show negligible error in impact angle and miss distance for moving targets. The guidance law, in its feedback implementation form, achieves the desired impact angle for interceptors with delay and with a maneuvering target. The impact angle errors are low with negligible errors in miss distance. Next, the impact angle constrained guidance problem against a stationary target is solved as a non-linear regulator problem using the SDRE technique. The interceptor guidance problems are of finite time nature. As the main contribution of this part of the work, we solve a finite time interceptor guidance problem with infinite horizon SDRE formulation by choosing the state weighting matrix as a function of time-to-go. Numerical simulations are carried out both for a constant speed interceptor model and a realistic interceptor model. Simulations for both the models are carried out for various impact angles and firing angles. Robustness of the proposed guidance law with respect to autopilot lag is also verified by simulations. Results obtained show the efficiency of the SDRE approach for impact angle constrained missile guidance. A geometric guidance scheme is proposed for lateral interception of targets in a planar engagement scenario in the absence of line-of-sight rate information. A kill-band is defined for target initial positions capturable by an arc maneuver, followed by a straight line path by the interceptor. Guidance law for capturing targets inside the kill-band is presented and is further modified for targets outside the kill-band. Based on analytical studies on the kill-band, a guidance law is proposed for lateral interception of maneuvering targets. Simulations are carried with for typical low speed engagements. The concept of kill-band provides an inherent robustness to the proposed guidance law with respect to uncompensated system delays and target maneuver. As the final part of the work, an interceptor endgame pulsed guidance law for exoatmospheric engagements is derived by using the notion of collision heading. The proposed guidance law is derived in steps by (i) Obtaining the collision heading based on the collision triangle engagement geometry and then (ii) Computing the width of the pulse fired by the divert thruster to attain the collision heading. It is shown that this strategy is more effective than the existing zero effort miss (ZEM) based guidance laws for intercepting targets with higher heading angles off the nominal head-on collision course. A result on pulse firing sequence is also presented showing that firing pulses in quick succession results in minimum pulse widths and hence minimum control effort for a desired miss distance. Simulations are carried out for various engagement scenarios. Results show better miss-distance and divert thrust performance as compared to the existing ZEM based law.
12

Robot 58 påverkan på den svenska pansarvärnsförmågan; en systemjämförelse av svenska pansarvärnsrobotsystem. / Rbs 58 impact on the Swedish anti-tank capability; a system comparison of Swedish anti-tank robots.

Cagenius, Anton January 2023 (has links)
I och med den ryska invasionen av Ukraina har Försvarsmakten identifierat behovet av en ökad pansarvärnsförmåga. Detta har lett till prov och försök av ett nytt pansarvärnsrobotsystem. Införandet av ett nytt vapensystem med nya egenskaper är en utmaning. När detta vapensystem är en pansarvärnsrobot vars förmåga inom markstridande förband har varit nedprioriterade i flera år, kan införandet ta tid. Arbetet generera underlag för att belysa de tekniska och doktrinära skillnaderna mellan Robot 58 och befintliga pansarvärnsrobotsystem som brukas i Försvarsmakten. Arbetets tillvägagångssätt var en intervjustudie där fyra individer intervjuades. Dokumentär forskning genomfördes för att komplettera och utvidga den data som samlats in från intervjuerna. De fyra olika pansarvärnsrobotsystemen egenskaper och prestanda analyserades genom en SWOT-analys. Analysen belystes ur Försvarsmaktens grundläggande förmågor, specifikt rörlighet och verkan. Resultatet av analysen visar att även fast systemen är ämnade för samma syfte, är Robot 58 väsentligt mer utvecklad och påvisar varför den tillhör generation fyra till skillnad från de andra robotsystemen. Robot 58 nya egenskaper, däribland indirekt eldgivning, kommer vapensystemet att bidra starkt till den tredimensionella striden för infanteriförbanden och utgöra ett stort hot mot motståndarens mekaniserade förmåga. Det som krävs är att chefer på lägre förbandsnivåer övar med förmågorna Robot 58 har att erbjuda. / Due to the Russian invasion of Ukraine, the Swedish Armed Forces have identified the need for an increased anti-tank capability. This has led to the test and trial of a new anti-tank missile. The introduction of a new weapon system with new characteristics can be a challenge. When this weapon system is an anti-tank missile which capabilities in ground combat units have been down prioritized for several years, the implementation can take time. The purpose of this paper was to generate data to highlight the technical and doctrinal differences between rbs 58 and existing anti-tank missiles used by the Swedish Armed Forces. The approach of the work was an interview study where four individuals were interviewed. Documentary research was conducted to complement the data collected from the interviews. The characteristics and performance of the four different anti-tank missile systems were analyzed with a SWOT analysis. The analysis was highlighted from the perspective of the Swedish Armed Forces' basic operational capabilities, specifically mobility and effectiveness. The result of the analysis showed that even though the systems are intended for the same purpose, rbs 58 is significantly more developed and demonstrates why it is considered to belong as a generation four missile unlike the other anti-tank missile. Rbs 58 new characteristics, including indirect fire mode, will greatly contribute to the three-dimensional battle for infantry units and pose a major threat to the opponent's mechanized units. The requirement is that officers at lower unit levels practice with the capabilities rbs 58 has to offer.

Page generated in 1.6807 seconds