• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 8
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

V-ATPase deactivation in blowfly salivary glands is mediated by protein phosphatase 2C

Voss, Martin, Blenau, Wolfgang, Walz, Bernd, Baumann, Otto January 2009 (has links)
The activity of vacuolar H+-ATPase (V-ATPase) in the apical membrane of blowfly (Calliphora vicina) salivary glands is regulated by the neurohormone serotonin (5-HT). 5-HT induces, via protein kinase A, the phosphorylation of V-ATPase subunit C and the assembly of V-ATPase holoenzymes. The protein phosphatase responsible for the dephosphorylation of subunit C and V-ATPase inactivation is not as yet known. We show here that inhibitors of protein phosphatases PP1 and PP2A (tautomycin, ocadaic acid) and PP2B (cyclosporin A, FK-506) do not prevent V-ATPase deactivation and dephosphorylation of subunit C. A decrease in the intracellular Mg2+ level caused by loading secretory cells with EDTA-AM leads to the activation of proton pumping in the absence of 5-HT, prolongs the 5-HT-induced response in proton pumping, and inhibits the dephosphorylation of subunit C. Thus, the deactivation of V-ATPase is most probably mediated by a protein phosphatase that is insensitive to okadaic acid and that requires Mg2+, namely, a member of the PP2C protein family. By molecular biological techniques, we demonstrate the expression of at least two PP2C protein family members in blowfly salivary glands. © 2009 Wiley Periodicals, Inc.
2

Efeito genômico e não-genômico da aldosterona no trocador Na+/H+ e na H+ - ATPase no túbulo proximal (S3): papel do cálcio citosólico. / Genomic and Nongenomic Effects of Aldosterone on Na+/H+ Exchanger and H+-ATPase in Proximal Tubule (S3): role of Cytosolic Calcium.

Dellova, Deise Carla Almeida Leite 10 October 2007 (has links)
O presente estudo indica que o pHi basal do segmento S3 do túbulo proximal é 7.10 ? 0.007 (n = 444/2117), sendo a extrusão celular de H+ feita pelo trocador Na+/H+ (marjoritariamante) e pela H+-ATPase. Nossos resultados sugerem um papel do cálcio citosólico na regulação do processo de recuperação do pHi após carga ácida, mediada pelo trocador Na+/H+ e pela H+-ATPase. O trocador é estimulado por Aldosterona (10-12, 10-10 e 10-8 M) e inibido por Aldosterona (10-6 M) via ação genômica e não-genômica. Esses resultados são compatíveis com a estimulação do trocador por moderado aumento da [Ca2+]i citosólico (com Aldosterona 10-12 M) e sua inibição por pronunciado aumento da [Ca2+]i (com Aldosterona 10-6 M). A H+-ATPase é estimulada por Aldosterona em todas as doses utilizadas via ação genômica e não-genômica e esses resultados são coincidentes com um aumento da [Ca2+]i, dose dependente. Esses nossos achados são também compatíveis com a demonstração de uma ação hormonal não-genômica (após 1 ou 15 min) e genômica (após 1 hora) na [Ca2+]i, no trocador e na H+-ATPase. Adicionalmente, nossos resultados indicando que os efeitos hormonais genômicos ocorrem via receptor MR são coincidentes com nossos dados demonstrando a expressão desses receptores no segmento S3. Esses efeitos da Aldosterona que acabamos de descrever podem representar uma regulação fisiológica relevante, em condições de depleção e expansão de volume no animal intacto. / The present study indicate that the basal pHi of proximal S3 segment is 7.10 ? 0.007 (n = 444/2117), being made the extrusion by of Na+/H+ exchanger (mainly) and H+-ATPase. Our results suggest a role for cell calcium in regulating the process of pHi recovery after the acid load induced by NH4Cl, mostly mediated by a basolateral Na+/H+ exchanger, and stimulated by Aldosterone (10-12, 10-10 e 10-8 M) and impaired by Aldosterone (10-6 M) via a genomic and nongenomic action. They are compatible with stimulation of the Na+/H+ exchanger by increases in cell calcium in the lower range (at Aldosterone 10-12 M) and inhibition at high cell calcium levels (at Aldosterone 10-6 M). The H+-ATPase is stimulated in all the used doses via a genomic and nongenomic action, this is coincident with the dose-dependent increase in [Ca2+]i. This finding is also compatible with the demonstration of a hormonal nongenomic (after 1 min or 15 min) and genomic (after 1 h) action on [Ca2+]i, on the Na+/H+ exchanger and on H+-ATPase. Our results indicating that the genomics effects are via MR receptor are in accordanc with our finding showing expression of the receptors in the proximal S3 segment of rat. These Aldosterone effects may represent physiologically relevant regulation in conditions of volume depletion or expansion in the intact animal.
3

Sistema de absorÃÃo de k+ de alta afinidade em plantas de sorgo forrageiro: papel da h+-atpase de membrana plasmÃtica e dos componentes sensÃvel e nÃo-sensÃvel ao Ãon nh4+ / System of absorption of k+ of high affinity in plants of sorgo forrageiro: paper of h+-atpase of plasmÃtica membrane and the components sensible and not-sensible to ion nh4+

Juan Carlos Alvarez Pizarro 08 March 2006 (has links)
CoordenaÃÃo de AperfeiÃoamento de NÃvel Superior / O influxo de K+ na faixa de alta afinidade à controlado por transportadores dos tipos canal e carreador, os quais diferem na sua sensibilidade ao Ãon NH4 +. A atividade de ambos os componentes, nÃo-sensÃvel (canal) e sensÃvel (carreador) ao Ãon NH4 + dependem da enzima de membrana plasmÃtica, H+-ATPase. Objetivou-se a caracterizaÃÃo fisiolÃgica e molecular da absorÃÃo de K+ de alta afinidade em sorgo forrageiro [Sorghum bicolor (L.) Moench] sob a influÃncia do estado nutricional da planta e de diferentes fontes de nitrogÃnio inorgÃnico na soluÃÃo de crescimento. Sementes do genÃtipo CSF20 foram germinadas e cultivadas em soluÃÃes nutritivas contendo dois nÃveis de K+ (0,2 e 1,4 mM) e trÃs diferentes regimes de nitrogÃnio inorgÃnico (NO3 - e NH4 + a 4 mM, e a mistura NO3 -/NH4 +, ambos a 2 mM). ApÃs 15 dias de cultivo (t0) em soluÃÃes nutritivas completas, as plantas foram submetidas à deficiÃncia de K+ por 1 (t1), 2 (t2) e 3 (t3) dias. No t0, os teores de K+ da parte aÃrea foram reduzidos ignificativamente pela presenÃa do Ãon NH4 +, enquanto que, nas raÃzes a reduÃÃo foi significativa apenas nos cultivos com 0,2 mM de K+. Conforme o aumento do perÃodo de deficiÃncia, os teores de K+ nas raÃzes e na parte aÃrea tenderam a diminuir em razÃo da diluiÃÃo provocada pelo crescimento da planta. Em plantas cultivadas com 0,2 mM de K+ e com NO3 - e NO3 -/NH4 +, as eficiÃncias de absorÃÃo de K+ foram similares. Entretanto, a presenÃa do Ãon NH4 + como Ãnica fonte de nitrogÃnio, afetou severamente esse parÃmetro. O efeito do Ãon NH4 + na eficiÃncia de absorÃÃo foi mais ameno quando as plantas foram cultivadas a 1,4 mM de K+. A eficiÃncia de transporte de K+ nÃo diferiu em nenhum dos tratamentos testados. As curvas de depleÃÃo de K+ mostraram que as plantas cultivadas com NO3 -/NH4 + e NH4 + apresentaram maior capacidade para esgotar o K+ (100 μM) da soluÃÃo de depleÃÃo quando comparadas Ãquelas crescidas com NO3 -. No t2, maiores taxas de Imax foram observadas nas plantas cultivadas com NH4 + como Ãnica fonte de nitrogÃnio. O Km para o K+, das plantas provindas dos cultivos com 0,2 e 1,4 mM de K+, apresentou valores menores nas plantas tratadas com NH4 + e NO3 -/NH4 +. A induÃÃo da absorÃÃo de alta afinidade de K+ foi influenciada pelo conteÃdo de K+ dos tecidos aÃreos. Ensaios com inibidores mostraram que o influxo de K+ foi significativamente inibido pelo Ãon NH4 + a 1 mM em plantas cultivadas com NO3 - como Ãnica fonte de nitrogÃnio. Entretanto, a capacidade de absorÃÃo de K+ foi reduzida pela presenÃa de TEA nas plantas cultivadas em soluÃÃes contendo o Ãon NH4 + como Ãnica fonte de nitrogÃnio. Esses resultados sugerem que em plantas de sorgo sob deficiÃncia de K+ e na presenÃa do Ãon NH4 + no meio de crescimento, canais de K+ podem contribuir significativamente para o influxo de K+. Por outro lado, na ausÃncia do Ãon NH4 + durante o crescimento, um sistema de transporte mediado por carreadores de K+ seria a via principal para o influxo desse nutriente. A atividade de transporte de H+ da H+-ATPase de membrana plasmÃtica isolada de raÃzes mostrou que a deficiÃncia de K+ (t2) estimulou a capacidade de formaÃÃo do gradiente de H+ em presenÃa do Ãon NH4 + nas plantas provindas dos cultivos com 1,4 mM de K+, enquanto que naquelas provindas dos cultivos com 0,2 mM de K+, o Ãon NH4 + teve efeito na velocidade inicial do transporte de H+ e na hidrÃlise do ATP. A deficiÃncia de K+ na presenÃa do NO3 - nÃo estimulou as atividades da bomba de 11 H+. ImunodetecÃÃo com anticorpos especÃficos contra H+-ATPases de membrana plasmÃtica de plantas mostrou a induÃÃo de duas isoformas nas membranas plasmÃticas oriundas de plantas cultivadas com 0,2 mM de K+, independentemente da fonte de nitrogÃnio e dos perÃodos de deficiÃncia. SeqÃencias gÃnicas correspondentes a genes de H+-ATPases de membrana plasmÃtica (SBA1 e SBA2), canais (SbAKT1) e carreadores de K+ (SbHAK1) foram selecionadas no genoma do sorgo e seus nÃveis de expressÃo em raÃzes analisados por PCR em tempo real. Os genes SBA1 e SBA2 pertencem, respectivamente, aos grupos II e I da famÃlia das H+-ATPases. Em raÃzes provindas dos cultivos com 0,2 mM de K+ e na presenÃa do Ãon NH4 + os nÃveis dos transcritos de SBA1 e SBA2 foram significativamente expressos a partir do tempo t2 de deficiÃncia de K+, enquanto que na presenÃa do Ãon NO3 - eles foram reduzidos conforme o aumento do tempo de deficiÃncia. Na dose mais alta de K+, os transcritos de SBA1 tiveram sua expressÃo incrementada pela deficiÃncia de K+ em presenÃa do Ãon NH4 + como Ãnica fonte de nitrogÃnio. Ambos os genes tiveram um incremento transitÃrio dos nÃveis dos transcritos no t1 de deficiÃncia de K+ na presenÃa do Ãon NO3 -. Transcritos dos genes SbAKT1 e SbHAK1 nÃo foram detectados. AnÃlises filogenÃticas mostraram que SbAKT à um canal de K+ da famÃlia Shaker, compartilhando origem evolutiva comum com vÃrios canais de K+ de gramÃneas. Os resultados sugerem que a homeostase iÃnica do K+ à alterada pelo Ãon NH4 + em plantas de sorgo. No entanto, a adaptaÃÃo das plantas à presenÃa do Ãon NH4 + envolve a induÃÃo de um sistema altamente eficiente para a aquisiÃÃo de K+, com a participaÃÃo de canais de K+ e da H+-ATPase de membrana plasmÃtica / K+ influx in the range of high affinity is mediated by K+ carriers and channels, which can be distinguished by its differential sensibility to NH4+. The activity of the NH4+-sensitive component (carrier) and NH4+-insensitive component (channel) depend upon plasma membrane H+-ATPase. This work aimed the physiological and molecular characterization of system mediating K+ uptake in the high-affinity range of concentration in sorghum [(Sorghum bicolor (L.) Moench)]. The effect of K+ starvation and nitrogen inorganic source of the growth solution on high-affinity K+ uptake was also studied. Seeds of sorghum, genotype CSF20, were germinated and placed in modified one-fourth Hoagland solutions, which were formulated to contain 0,2 and 1,4 mM K+ and three nitrogen inorganic source, NO3- and NH4+ (4 mM) and NO3-/NH4+ in combination (2mM/2mM). Plants were grown for 15 days (t0) in complete nutritive solutions and then incubated in a K+-free solutions for one (t1), two (t2) and three (t3)days. At t0, K+ content of shoot was significantly decreased in plants grown in the presence of NH4+. In roots, the presence of NH4+ did altered the K+ content only of plants cultivated in solutions with lowest K+ concentration. The K+ content of the plant tissues was progressively reduced according to increasing of starvation period and increasing of dry matter (dilution). The highest reductions were observed in K+ content of the shoot. At the lowest level of K+ (0,2 mM), plants grown in solutions containing NO3- and NO3-/NH4+ showed similar uptake efficiency of K+. Whereas, the presence of NH4 as sole nitrogen source, reduced severely the absorption rates of K+. The effect of NH4+ on uptake efficiency of K+ was alleviated by increasing the external K+ concentration to 1,4 mM K+. At both levels of K+, the translocation rate of K+ was not altered by the presence of NH4 + and by K+ starvation. Assays of depletion in the external medium of K+ (100 μM) showed that plants growing in the presence of NO3-/NH4+ and NH4+ were more efficient to deplete external K+ than plants grown with NO3- , as sole nitrogen source. Kinetic parameters were significantly different at second day (t2) of deprivation. In the presence of NH4 +, as sole nitrogen source, Imax values were higher than those of plants grown in NO3-/NH4 + and NO3 -. On the other hand, Km values were lower in plants from solutions containing NH4+ and NO3 -/NH4 + than those cultivated in NO3-, as sole nitrogen source. High-affinity uptake of K+ responded to changes in plant K+ status, mainly to K+ content of aerial parts. K+ uptake by plants growing in NO3- was significantly inhibited by inclusion of NH4 at 1 mM in depletion solution, whereas it was not inhibited in plants grown with NH4 +, as sole nitrogen source. TEA (tetraethylammonium) inhibited the K+ influx of plants cultivated in solution containing NH4 +, as sole nitrogen source. The results suggest that factors such as presence of K+ or NH4 + during plant growth determine the relative contribution of each component to high-affinity uptake system of K+. In K+-starved plants grown in the presence of NH4 +, K+ channel could contribute to K+ uptake in the range of high-affinity concentration. On the other hand, in K+-starved plants grown without NH4 +, K+ carrier could constitute the principal route for K+ uptake. Active H+-transport driven by plasma membrane H+-ATPase of sorghum roots was stimulated by K+ deficiency and NH4 + in plants from solutions with high K+ level. However, these factors affected the initial rate 13 of H+-pumping and hydrolytic activity of ATP, but not H+-gradient formation, in plants from solutions containing 0,2 mM K+. These activities were not changed when plants were cultivated in growth solutions containing NO3 - and submitted to K+-starvation. Two specific isoforms of PM H+-ATPase by immuno-detection were detected, independent of the nitrogen source and deficiency period. No change in enzyme activity was observed in NO3 --grown. cDNA sequences corresponding to plasma membrane H+-ATPase (SBA1 and SBA2), K+ channels (SbAKT) and K+ carrier (SbHAK1) from sorghum genome were identified. The expression level of these genes was analyzed by real-time PCR. SBA1 and SBA2 genes were included at subfamily II and I of plasma membrane H+-ATPase, respectively. In plants cultivated in solutions containing 0,2 mM K+ and with NH4+, the accumulation of SBA1 and SBA2 transcripts was observed after 48 h (t2) of K+ deficiency. Whereas, the expression level of these genes was reduced in plants cultivated with NO3 -. In roots came from solutions containing 1,4 mM K+ level, the accumulation of SBA1 transcripts was only observed in the presence of NH4 + and after 48 h (t2) of K+ deficiency. The transcript level of both genes increased only at t1 in roots cultivated in solution containing NO3 -, as sole nitrogen source. Transcipts of SbAKT and SbHAK1 were not detectable by real-time PCR. Phylogenetic analysis revealed that SbAKT belongs to Shaker channel family of plants and is also closely related to members of other gramineous species. The results suggest that K+ homeostasis in NH4+-grown sorghum plants may be regulated by a high capacity for K+ uptake, which is dependent upon the H+ -pumping activity of PM H+-ATPase and K+ channels
4

Efeito genômico e não-genômico da aldosterona no trocador Na+/H+ e na H+ - ATPase no túbulo proximal (S3): papel do cálcio citosólico. / Genomic and Nongenomic Effects of Aldosterone on Na+/H+ Exchanger and H+-ATPase in Proximal Tubule (S3): role of Cytosolic Calcium.

Deise Carla Almeida Leite Dellova 10 October 2007 (has links)
O presente estudo indica que o pHi basal do segmento S3 do túbulo proximal é 7.10 ? 0.007 (n = 444/2117), sendo a extrusão celular de H+ feita pelo trocador Na+/H+ (marjoritariamante) e pela H+-ATPase. Nossos resultados sugerem um papel do cálcio citosólico na regulação do processo de recuperação do pHi após carga ácida, mediada pelo trocador Na+/H+ e pela H+-ATPase. O trocador é estimulado por Aldosterona (10-12, 10-10 e 10-8 M) e inibido por Aldosterona (10-6 M) via ação genômica e não-genômica. Esses resultados são compatíveis com a estimulação do trocador por moderado aumento da [Ca2+]i citosólico (com Aldosterona 10-12 M) e sua inibição por pronunciado aumento da [Ca2+]i (com Aldosterona 10-6 M). A H+-ATPase é estimulada por Aldosterona em todas as doses utilizadas via ação genômica e não-genômica e esses resultados são coincidentes com um aumento da [Ca2+]i, dose dependente. Esses nossos achados são também compatíveis com a demonstração de uma ação hormonal não-genômica (após 1 ou 15 min) e genômica (após 1 hora) na [Ca2+]i, no trocador e na H+-ATPase. Adicionalmente, nossos resultados indicando que os efeitos hormonais genômicos ocorrem via receptor MR são coincidentes com nossos dados demonstrando a expressão desses receptores no segmento S3. Esses efeitos da Aldosterona que acabamos de descrever podem representar uma regulação fisiológica relevante, em condições de depleção e expansão de volume no animal intacto. / The present study indicate that the basal pHi of proximal S3 segment is 7.10 ? 0.007 (n = 444/2117), being made the extrusion by of Na+/H+ exchanger (mainly) and H+-ATPase. Our results suggest a role for cell calcium in regulating the process of pHi recovery after the acid load induced by NH4Cl, mostly mediated by a basolateral Na+/H+ exchanger, and stimulated by Aldosterone (10-12, 10-10 e 10-8 M) and impaired by Aldosterone (10-6 M) via a genomic and nongenomic action. They are compatible with stimulation of the Na+/H+ exchanger by increases in cell calcium in the lower range (at Aldosterone 10-12 M) and inhibition at high cell calcium levels (at Aldosterone 10-6 M). The H+-ATPase is stimulated in all the used doses via a genomic and nongenomic action, this is coincident with the dose-dependent increase in [Ca2+]i. This finding is also compatible with the demonstration of a hormonal nongenomic (after 1 min or 15 min) and genomic (after 1 h) action on [Ca2+]i, on the Na+/H+ exchanger and on H+-ATPase. Our results indicating that the genomics effects are via MR receptor are in accordanc with our finding showing expression of the receptors in the proximal S3 segment of rat. These Aldosterone effects may represent physiologically relevant regulation in conditions of volume depletion or expansion in the intact animal.
5

Etude du rôle des H+-ATPases de la membrane plasmique dans la régulation des mouvements stomatiques chez Arabidopsis thaliana / Role of plasma membrane H+-ATPase in stomatal movements regulation in Arabidopsis thaliana

Renaud, Jeanne 27 October 2015 (has links)
Sur l’épiderme des feuilles des végétaux supérieurs, se trouvent des pores appelés stomates et composés de deux cellules spécialisées, les cellules de garde. La régulation des mouvements stomatiques en réponse aux signaux de l’environnement permet le contrôle des échanges gazeux de la plante avec l’atmosphère. Ces mouvements sont dus à des variations rapides de la turgescence des cellules de garde. Les H+-ATPases sont des pompes à protons situées sur la membrane plasmique des cellules des végétaux. En excrétant les ions H+ dans l’apoplasme, ces protéines génèrent une force protomotrice capable de fournir l’énergie nécessaire à l’activation de canaux et transporteurs ioniques membranaires. Ce processus permet de contrôler la turgescence des cellules de garde. Des analyses d’expression nous ont permis d’identifier les trois isoformes d’H+-ATPases, AHA1, AHA2 et AHA5, exprimées dans la cellule de garde. Des études in silico nous ont révélé qu’en dépit d’une forte proximité génétique, ces trois protéines semblent être impliquées dans des voies de signalisation différentes. La caractérisation phénotypique d’une collection de mutants affectés dans l’expression de chacune des isoformes nous a permis de mettre en évidence qu’AHA1 est l’H+-ATPase spécifique de la réponse stomatique à la lumière bleue et que la perte d’expression de cette isoforme confère à la plante une croissance plus faible et une meilleure tolérance à la sécheresse que le sauvage. Enfin, nous avons confirmé par des études d’électrophysiologie et par l’élaboration de sondes fluorescentes pH-sensibles l’implication directe d’AHA1 dans la voie de signalisation de la lumière bleue dans la cellule de garde. / Stomata are pores laocated on high plant leaf epidermis and formed by two specialized guard cells. Stomatal movement regulation in response to environment allows the control plant-atmosphere gas exchanges. Stomatal movements are ruled by rapid turgor changes in guard cells. H+-ATPases are proton pomps expressed on plant cell plasma membrane. By extruding H+ in the apoplast, these proteins generate a protomotive force able to activate secondary ionic transporters and channels. This process leads to changes in ion homeostasy and in fine to turgor changes in the guard cell. Expression analyses allowed us to identify the three AHAs isoforms expressed in the guard cell : AHA1, AHA2 and AHA5. In silico study indicates that despite the high identity percentage between the three proteins, they seem involved in differents signalisation pathways. Phenotypic characterization of mutants impaired in the expression of each AHAs allowed us to conclude that AHA1 is specific for the blue light stomatal response. Furthermore, the lack of AHA1 leads to a lower growth and a better tolerance to drought stress of aha1 mutant compare to the wild type. Sugar metabolism studies in aha1 mutant gave us informations on the compensatory mecanism for stomatal opening in this mutant. Finally, we confirmed by electrophisiologcal studies and by fluorescent pH sensitive probes elaboration, the specific involvement of AHA1 in blue light signalisation pathway in the guard cell.
6

Hormone-induced assembly and activation of V-ATPase in blowfly salivary glands is mediated by protein kinase A

Rein, Julia, Voss, Martin, Blenau, Wolfgang, Walz, Bernd, Baumann, Otto January 2008 (has links)
The vacuolar H+-ATPase (V-ATPase) in the apical membrane of blowfly (Calliphora vicina) salivary gland cells energizes the secretion of a KCl-rich saliva in response to the neurohormone serotonin (5-HT). We have shown previously that exposure to 5-HT induces a cAMP-mediated reversible assembly of V-0 and V-1 subcomplexes to V-ATPase holoenzymes and increases V-ATPase-driven proton transport. Here, we analyze whether the effect of cAMP on V-ATPase is mediated by protein kinase A (PKA) or exchange protein directly activated by cAMP (Epac), the cAMP target proteins that are present within the salivary glands. Immunofluorescence microscopy shows that PKA activators, but not Epac activators, induce the translocation of V1 components from the cytoplasm to the apical membrane, indicative of an assembly of V-ATPase holoenzymes. Measurements of transepithelial voltage changes and microfluorometric pH measurements at the luminal surface of cells in isolated glands demonstrate further that PKA-activating cAMP analogs increase cation transport to the gland lumen and induce a V-ATPase-dependent luminal acidification, whereas activators of Epac do not. Inhibitors of PKA block the 5-HT-induced V-1 translocation to the apical membrane and the increase in proton transport. We conclude that cAMP exerts its effects on V-ATPase via PKA.
7

Role of the V-ATPase a3 Subunit in Osteoclast Maturation and Function

Ochotny, Noelle Marie 14 January 2014 (has links)
Bone resorption involves osteoclast-mediated acidification via a vacuolar type H+-ATPase (V-ATPase) found in lysosomes and at the ruffled border membrane. V-ATPases are proton pumps that include the a3 subunit, one of four isoforms (a1-a4) in mammals. The a3 isoform is enriched in osteoclasts where it is essential for bone resorption. Over 50% of humans with osteopetrosis have mutations in the a3 subunit and a3 mutations in mouse also result in osteopetrosis. A mouse founder with an osteopetrotic phenotype was identified in an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. This mouse bears a dominant missense mutation in the Tcirg1 gene that encodes the a3 subunit resulting in the replacement of a highly conserved amino acid, arginine 740, with serine (R740S). The heterozygous mice (+/R740S) exhibit high bone density but otherwise have a normal appearance, size and weight. Osteoblast parameters are unaffected whereas osteoclast number and marker expression are increased along with a decreased number of apoptotic osteoclasts. V-ATPases from +/R740S osteoclast membranes have severely reduced proton transport along with wild type levels of ATP hydrolysis, indicating that the R740S mutation uncouples ATP hydrolysis from proton transport. The mutation however has no effect on ruffled border formation or polarization of +/R740S osteoclasts. Mice homozygous for R740S (R740S/R740S) have more severe osteopetrosis than +/R740S mice and die by postnatal day 14. Similarly to the mouse models that lack the a3 subunit (oc/oc and Tcirg1-/-) R740S/R740S osteoclasts do not polarize and lack ruffled border membranes. However R740S/R740S osteoclasts exhibit unique phenotypic traits, including increased apoptosis and defective early stage autophagy. Intracellular and extracellular acidification is absent in R740S/R740S osteoclasts, providing evidence for a requirement for lysosomal acidification for cytoplasmic distribution of key osteoclast enzymes such as TRAP and other important osteoclast phenotypic traits. This work provides evidence that the a3 subunit of V-ATPases and the proton pumping function of a3-containing V-ATPases play a major role in osteoclast survival, maturation and function.
8

Role of the V-ATPase a3 Subunit in Osteoclast Maturation and Function

Ochotny, Noelle Marie 14 January 2014 (has links)
Bone resorption involves osteoclast-mediated acidification via a vacuolar type H+-ATPase (V-ATPase) found in lysosomes and at the ruffled border membrane. V-ATPases are proton pumps that include the a3 subunit, one of four isoforms (a1-a4) in mammals. The a3 isoform is enriched in osteoclasts where it is essential for bone resorption. Over 50% of humans with osteopetrosis have mutations in the a3 subunit and a3 mutations in mouse also result in osteopetrosis. A mouse founder with an osteopetrotic phenotype was identified in an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. This mouse bears a dominant missense mutation in the Tcirg1 gene that encodes the a3 subunit resulting in the replacement of a highly conserved amino acid, arginine 740, with serine (R740S). The heterozygous mice (+/R740S) exhibit high bone density but otherwise have a normal appearance, size and weight. Osteoblast parameters are unaffected whereas osteoclast number and marker expression are increased along with a decreased number of apoptotic osteoclasts. V-ATPases from +/R740S osteoclast membranes have severely reduced proton transport along with wild type levels of ATP hydrolysis, indicating that the R740S mutation uncouples ATP hydrolysis from proton transport. The mutation however has no effect on ruffled border formation or polarization of +/R740S osteoclasts. Mice homozygous for R740S (R740S/R740S) have more severe osteopetrosis than +/R740S mice and die by postnatal day 14. Similarly to the mouse models that lack the a3 subunit (oc/oc and Tcirg1-/-) R740S/R740S osteoclasts do not polarize and lack ruffled border membranes. However R740S/R740S osteoclasts exhibit unique phenotypic traits, including increased apoptosis and defective early stage autophagy. Intracellular and extracellular acidification is absent in R740S/R740S osteoclasts, providing evidence for a requirement for lysosomal acidification for cytoplasmic distribution of key osteoclast enzymes such as TRAP and other important osteoclast phenotypic traits. This work provides evidence that the a3 subunit of V-ATPases and the proton pumping function of a3-containing V-ATPases play a major role in osteoclast survival, maturation and function.
9

Sistema de absorção de k+ de alta afinidade em plantas de sorgo forrageiro: papel da h+-atpase de membrana plasmática e dos componentes sensível e não-sensível ao íon nh4+ / System of absorption of k+ of high affinity in plants of sorgo forrageiro: paper of h+-atpase of plasmática membrane and the components sensible and not-sensible to ion nh4+

Pizarro, Juan Carlos Alvarez January 2006 (has links)
PIZARRO, Juan Carlos Alvarez. Sistema de absorção de k+ de alta afinidade em plantas de sorgo forrageiro: papel da h+-atpase de membrana plasmática e dos componentes sensível e não-sensível ao íon nh4+. 2006. 173 f. Tese (Doutorado em bioquímica)- Universidade Federal do Ceará, Fortaleza-CE, 2006. / Submitted by Elineudson Ribeiro (elineudsonr@gmail.com) on 2016-07-20T15:47:09Z No. of bitstreams: 1 2010_tese_jcapizarro.pdf: 3038463 bytes, checksum: cd0fb495cdfa5bf091b52ddc1ac18d6a (MD5) / Approved for entry into archive by José Jairo Viana de Sousa (jairo@ufc.br) on 2016-08-02T18:20:53Z (GMT) No. of bitstreams: 1 2010_tese_jcapizarro.pdf: 3038463 bytes, checksum: cd0fb495cdfa5bf091b52ddc1ac18d6a (MD5) / Made available in DSpace on 2016-08-02T18:20:54Z (GMT). No. of bitstreams: 1 2010_tese_jcapizarro.pdf: 3038463 bytes, checksum: cd0fb495cdfa5bf091b52ddc1ac18d6a (MD5) Previous issue date: 2006 / K+ influx in the range of high affinity is mediated by K+ carriers and channels, which can be distinguished by its differential sensibility to NH4+. The activity of the NH4+-sensitive component (carrier) and NH4+-insensitive component (channel) depend upon plasma membrane H+-ATPase. This work aimed the physiological and molecular characterization of system mediating K+ uptake in the high-affinity range of concentration in sorghum [(Sorghum bicolor (L.) Moench)]. The effect of K+ starvation and nitrogen inorganic source of the growth solution on high-affinity K+ uptake was also studied. Seeds of sorghum, genotype CSF20, were germinated and placed in modified one-fourth Hoagland solutions, which were formulated to contain 0,2 and 1,4 mM K+ and three nitrogen inorganic source, NO3- and NH4+ (4 mM) and NO3-/NH4+ in combination (2mM/2mM). Plants were grown for 15 days (t0) in complete nutritive solutions and then incubated in a K+-free solutions for one (t1), two (t2) and three (t3)days. At t0, K+ content of shoot was significantly decreased in plants grown in the presence of NH4+. In roots, the presence of NH4+ did altered the K+ content only of plants cultivated in solutions with lowest K+ concentration. The K+ content of the plant tissues was progressively reduced according to increasing of starvation period and increasing of dry matter (dilution). The highest reductions were observed in K+ content of the shoot. At the lowest level of K+ (0,2 mM), plants grown in solutions containing NO3- and NO3-/NH4+ showed similar uptake efficiency of K+. Whereas, the presence of NH4 as sole nitrogen source, reduced severely the absorption rates of K+. The effect of NH4+ on uptake efficiency of K+ was alleviated by increasing the external K+ concentration to 1,4 mM K+. At both levels of K+, the translocation rate of K+ was not altered by the presence of NH4 + and by K+ starvation. Assays of depletion in the external medium of K+ (100 μM) showed that plants growing in the presence of NO3-/NH4+ and NH4+ were more efficient to deplete external K+ than plants grown with NO3- , as sole nitrogen source. Kinetic parameters were significantly different at second day (t2) of deprivation. In the presence of NH4 +, as sole nitrogen source, Imax values were higher than those of plants grown in NO3-/NH4 + and NO3 -. On the other hand, Km values were lower in plants from solutions containing NH4+ and NO3 -/NH4 + than those cultivated in NO3-, as sole nitrogen source. High-affinity uptake of K+ responded to changes in plant K+ status, mainly to K+ content of aerial parts. K+ uptake by plants growing in NO3- was significantly inhibited by inclusion of NH4 at 1 mM in depletion solution, whereas it was not inhibited in plants grown with NH4 +, as sole nitrogen source. TEA (tetraethylammonium) inhibited the K+ influx of plants cultivated in solution containing NH4 +, as sole nitrogen source. The results suggest that factors such as presence of K+ or NH4 + during plant growth determine the relative contribution of each component to high-affinity uptake system of K+. In K+-starved plants grown in the presence of NH4 +, K+ channel could contribute to K+ uptake in the range of high-affinity concentration. On the other hand, in K+-starved plants grown without NH4 +, K+ carrier could constitute the principal route for K+ uptake. Active H+-transport driven by plasma membrane H+-ATPase of sorghum roots was stimulated by K+ deficiency and NH4 + in plants from solutions with high K+ level. However, these factors affected the initial rate 13 of H+-pumping and hydrolytic activity of ATP, but not H+-gradient formation, in plants from solutions containing 0,2 mM K+. These activities were not changed when plants were cultivated in growth solutions containing NO3 - and submitted to K+-starvation. Two specific isoforms of PM H+-ATPase by immuno-detection were detected, independent of the nitrogen source and deficiency period. No change in enzyme activity was observed in NO3 --grown. cDNA sequences corresponding to plasma membrane H+-ATPase (SBA1 and SBA2), K+ channels (SbAKT) and K+ carrier (SbHAK1) from sorghum genome were identified. The expression level of these genes was analyzed by real-time PCR. SBA1 and SBA2 genes were included at subfamily II and I of plasma membrane H+-ATPase, respectively. In plants cultivated in solutions containing 0,2 mM K+ and with NH4+, the accumulation of SBA1 and SBA2 transcripts was observed after 48 h (t2) of K+ deficiency. Whereas, the expression level of these genes was reduced in plants cultivated with NO3 -. In roots came from solutions containing 1,4 mM K+ level, the accumulation of SBA1 transcripts was only observed in the presence of NH4 + and after 48 h (t2) of K+ deficiency. The transcript level of both genes increased only at t1 in roots cultivated in solution containing NO3 -, as sole nitrogen source. Transcipts of SbAKT and SbHAK1 were not detectable by real-time PCR. Phylogenetic analysis revealed that SbAKT belongs to Shaker channel family of plants and is also closely related to members of other gramineous species. The results suggest that K+ homeostasis in NH4+-grown sorghum plants may be regulated by a high capacity for K+ uptake, which is dependent upon the H+ -pumping activity of PM H+-ATPase and K+ channels. / O influxo de K+ na faixa de alta afinidade é controlado por transportadores dos tipos canal e carreador, os quais diferem na sua sensibilidade ao íon NH4 +. A atividade de ambos os componentes, não-sensível (canal) e sensível (carreador) ao íon NH4 + dependem da enzima de membrana plasmática, H+-ATPase. Objetivou-se a caracterização fisiológica e molecular da absorção de K+ de alta afinidade em sorgo forrageiro [Sorghum bicolor (L.) Moench] sob a influência do estado nutricional da planta e de diferentes fontes de nitrogênio inorgânico na solução de crescimento. Sementes do genótipo CSF20 foram germinadas e cultivadas em soluções nutritivas contendo dois níveis de K+ (0,2 e 1,4 mM) e três diferentes regimes de nitrogênio inorgânico (NO3 - e NH4 + a 4 mM, e a mistura NO3 -/NH4 +, ambos a 2 mM). Após 15 dias de cultivo (t0) em soluções nutritivas completas, as plantas foram submetidas à deficiência de K+ por 1 (t1), 2 (t2) e 3 (t3) dias. No t0, os teores de K+ da parte aérea foram reduzidos ignificativamente pela presença do íon NH4 +, enquanto que, nas raízes a redução foi significativa apenas nos cultivos com 0,2 mM de K+. Conforme o aumento do período de deficiência, os teores de K+ nas raízes e na parte aérea tenderam a diminuir em razão da diluição provocada pelo crescimento da planta. Em plantas cultivadas com 0,2 mM de K+ e com NO3 - e NO3 -/NH4 +, as eficiências de absorção de K+ foram similares. Entretanto, a presença do íon NH4 + como única fonte de nitrogênio, afetou severamente esse parâmetro. O efeito do íon NH4 + na eficiência de absorção foi mais ameno quando as plantas foram cultivadas a 1,4 mM de K+. A eficiência de transporte de K+ não diferiu em nenhum dos tratamentos testados. As curvas de depleção de K+ mostraram que as plantas cultivadas com NO3 -/NH4 + e NH4 + apresentaram maior capacidade para esgotar o K+ (100 μM) da solução de depleção quando comparadas àquelas crescidas com NO3 -. No t2, maiores taxas de Imax foram observadas nas plantas cultivadas com NH4 + como única fonte de nitrogênio. O Km para o K+, das plantas provindas dos cultivos com 0,2 e 1,4 mM de K+, apresentou valores menores nas plantas tratadas com NH4 + e NO3 -/NH4 +. A indução da absorção de alta afinidade de K+ foi influenciada pelo conteúdo de K+ dos tecidos aéreos. Ensaios com inibidores mostraram que o influxo de K+ foi significativamente inibido pelo íon NH4 + a 1 mM em plantas cultivadas com NO3 - como única fonte de nitrogênio. Entretanto, a capacidade de absorção de K+ foi reduzida pela presença de TEA nas plantas cultivadas em soluções contendo o íon NH4 + como única fonte de nitrogênio. Esses resultados sugerem que em plantas de sorgo sob deficiência de K+ e na presença do íon NH4 + no meio de crescimento, canais de K+ podem contribuir significativamente para o influxo de K+. Por outro lado, na ausência do íon NH4 + durante o crescimento, um sistema de transporte mediado por carreadores de K+ seria a via principal para o influxo desse nutriente. A atividade de transporte de H+ da H+-ATPase de membrana plasmática isolada de raízes mostrou que a deficiência de K+ (t2) estimulou a capacidade de formação do gradiente de H+ em presença do íon NH4 + nas plantas provindas dos cultivos com 1,4 mM de K+, enquanto que naquelas provindas dos cultivos com 0,2 mM de K+, o íon NH4 + teve efeito na velocidade inicial do transporte de H+ e na hidrólise do ATP. A deficiência de K+ na presença do NO3 - não estimulou as atividades da bomba de 11 H+. Imunodetecção com anticorpos específicos contra H+-ATPases de membrana plasmática de plantas mostrou a indução de duas isoformas nas membranas plasmáticas oriundas de plantas cultivadas com 0,2 mM de K+, independentemente da fonte de nitrogênio e dos períodos de deficiência. Seqüencias gênicas correspondentes a genes de H+-ATPases de membrana plasmática (SBA1 e SBA2), canais (SbAKT1) e carreadores de K+ (SbHAK1) foram selecionadas no genoma do sorgo e seus níveis de expressão em raízes analisados por PCR em tempo real. Os genes SBA1 e SBA2 pertencem, respectivamente, aos grupos II e I da família das H+-ATPases. Em raízes provindas dos cultivos com 0,2 mM de K+ e na presença do íon NH4 + os níveis dos transcritos de SBA1 e SBA2 foram significativamente expressos a partir do tempo t2 de deficiência de K+, enquanto que na presença do íon NO3 - eles foram reduzidos conforme o aumento do tempo de deficiência. Na dose mais alta de K+, os transcritos de SBA1 tiveram sua expressão incrementada pela deficiência de K+ em presença do íon NH4 + como única fonte de nitrogênio. Ambos os genes tiveram um incremento transitório dos níveis dos transcritos no t1 de deficiência de K+ na presença do íon NO3 -. Transcritos dos genes SbAKT1 e SbHAK1 não foram detectados. Análises filogenéticas mostraram que SbAKT é um canal de K+ da família Shaker, compartilhando origem evolutiva comum com vários canais de K+ de gramíneas. Os resultados sugerem que a homeostase iônica do K+ é alterada pelo íon NH4 + em plantas de sorgo. No entanto, a adaptação das plantas à presença do íon NH4 + envolve a indução de um sistema altamente eficiente para a aquisição de K+, com a participação de canais de K+ e da H+-ATPase de membrana plasmática.
10

Genome-wide survey and molecular characterization of vacuolar-ATPase subunit genes in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae)

Coskun, Basak January 1900 (has links)
Master of Science / Department of Entomology / Kristopher S. Silver / Kun Yan Zhu / The yellow fever mosquito, Aedes aegypti, is a significant vector of several viral diseases, including Zika, dengue fever, yellow fever, and chikungunya. Since vaccines are not currently available for these viruses, control of the disease vectors by using insecticides is the most common practice for preventing disease. As a result, Ae. aegypti has developed resistance against many of the most commonly used insecticides, including organophosphates and pyrethroids. The rise in resistance in vector mosquitoes requires the search for new control strategies, such as RNA interference (RNAi), to manage mosquito populations. Vacuolar H[sup plus]+-ATPase (V-ATPase), a multi-subunit enzyme involved in many cellular processes, including membrane energization, acidification of organelles, and entry of dengue virus into the cytoplasm, is a potential target for RNAi, though little is known about its genetic structure or expression patterns in Ae. aegypti. In this study, I performed genome-wide surveys to identify the genes encoding different subunits of the V-ATPase protein complex, partially characterized the molecular properties and expression patterns of selected V-ATPase subunit genes, and tested the feasibility of using oral-based delivery of nanoparticles formed from double-stranded RNA (dsRNA) and chitosan to suppress the expression of selected V-ATPase subunit genes in Ae. aegypti. My genome-wide surveys revealed that Ae. aegypti V-ATPase consists of 13 different subunits (A, B, C, D, E, F, G, H, a, c, c”, d, e) encoded by 14 genes. Analysis of exon-intron arrangements for each gene demonstrated that each V-ATPase subunit gene has between one (subunit c) and 12 (subunit C) exons, with most genes (11) having 3 to 6 exons. Subsequent phylogenetic analysis of the deduced amino acid sequences of each subunit showed that V-ATPase subunits A, B, C, F, G, H, and a exhibited high levels of conservation among all the examined species, but subunits D, E, c, c”, d, and e showed high conservation only among dipteran species. Analysis of the expression profiles in different tissues and developmental stages of three specific V-ATPase subunits (A, D, and H) showed that whereas the expression of these genes varied between tissues and developmental stages, the patterns of expression of subunits A, D, and H were very similar. The highest mRNA expression level was observed in Malpighian tubules in fourth-instar larvae. Interestingly, expression of subunits A, D, or H in different tissues of adults was highest in male hindgut versus Malpighian tubules in females. Feeding mosquito larvae with chitosan nanoparticles made with dsRNA complementary to subunits A, D, or H resulted in significant suppression of mRNA transcript levels of each of these subunits. Peak suppression of V-ATPase A, D, or H transcripts occurred on the fifth day, where the gene transcript level was suppressed by 66.0, 27.3, or 70.4%, respectively, as compared with those of the control. Additionally, feeding of dsRNA/chitosan nanoparticles targeting subunit D caused mortality starting on day 3, with cumulative larval mortality reaching 14.8% on the sixth day. These results suggest that oral delivery of dsRNA/chitosan nanoparticles can substantially suppress target gene expression in Ae. aegypti larvae. However, increasing RNAi efficiency in targeting V-ATPase subunit genes in mosquito larvae appears to be necessary in order to obtain higher larval mortality using oral delivery of dsRNA/chitosan nanoparticles.

Page generated in 0.0333 seconds