Spelling suggestions: "subject:"hétérogénéité génétique"" "subject:"étérogénéité génétique""
1 |
Caractérisation moléculaire d'un nouveau syndrome de prédisposition au cancer colorectalJacob, Karine January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Hétérogénéité génétique et clonale des Syndromes Myélodysplasiques / Genetic and clonal heterogeneity of myelodysplastic syndromesChesnais, Virginie 15 December 2015 (has links)
Les syndromes myélodysplasiques (SMD) forment un groupe de pathologies clonales de la cellule souche hématopoïétique (CSH) caractérisées par une hématopoïèse inefficace. La présence d’au moins une anomalie génétique (anomalie cytogénétique ou mutation somatique) est observée dans plus de 90% des cas. Ainsi, plusieurs clones moléculaires pouvaient coexister au moment du diagnostic de la maladie. Dans les SMD avec délétion du chromosome 5 (del(5q)), il a récemment été montré que les anomalies étaient présentes dès le stade de la CSH. Dans les SMD, la pénétrance des anomalies génétiques décrites est incomplète. De plus, peu de choses sont actuellement connues sur l’ordre d’apparition des mutations et leur impact fonctionnel sur les différents clones moléculaires dans le cas des SMD non-del(5q). Grâce au séquençage d’exome entier (WES) de patients ne présentant aucune mutation dans les gènes décrits dans les SMD, nous avons décrit l’existence de mutations dans les gènes BCOR et BCORL1, chez respectivement 4,2% et 0,8% des patients. Les mutations du gène BCOR arrivent tardivement au cours de l’évolution de la maladie et affectent le pronostic des patients. Des approches à l’échelle unicellulaire nous ont également permis d’observer que la majeure partie des mutations identifiées chez les patients sont retrouvées dès le stade CD34+CD38-. Chez les patients, plusieurs clones moléculaires coexistent à ce stade. De plus, les mutations des gènes de l’épissage et de la régulation épigénétique sont fréquemment acquises en premier dans les cellules hématopoïétiques les plus immatures des patients porteurs de SMD. Nous avons observé que certaines mutations, acquises secondairement, sont réparties inégalement dans les différents compartiments hématopoïétiques et peuvent avoir un impact sur la différenciation hématopoïétique. Enfin, nous montrons que la répartition des clones moléculaires évolue au cours du temps. En réponse au traitement par Lenalidomide, on observe également une évolution rapide de l’architecture clonale qui peut être liée au statut de réponse des patients. Ces résultats tendent à confirmer l’hétérogénéité génétique mais aussi fonctionnelle des SMD. Nous avons pu identifier de nouvelles mutations impliquées secondairement dans la physiopathologie des SMD. Il existe une dominance clonale précoce dans les SMD du fait de l’acquisition de toutes les mutations dans les cellules hématopoïétiques immatures. Cependant, les différentes populations hématopoïétiques peuvent présenter des génotypes différents. Enfin cette architecture est variable au cours de l’évolution de la maladie. / Myelodysplastic syndromes (MDS) are a group of clonal disorders of the hematopoietic stem cell (HSC) characterized by ineffective hematopoiesis. At least one genetic abnormality (cytogenetic abnormality or somatic mutation) is observed in more than 90% of cases. Thus, it has been observed several molecular clones which could coexist at diagnosis of the disease. In MDS with deletion of chromosome 5 (del (5q)), it has recently been shown that defects were present in the HSC. In MDS, the penetrance of genetic abnormalities described is incomplete. In addition, little is currently known about the order of appearance of mutations and their functional impact on different molecular clones in the case of non-del (5q) MDS. Through the whole exome sequencing (WES) of patients without mutation in the genes described in MDS, we described the existence of mutations in genes BCOR and BCORL1, in respectively 4.2% and 0.8% of patients. Mutations in the gene BCOR were acquired lately during the course of the disease and affect the prognosis of patients. Approaches at the single cell level have also allowed us to observe that most of the mutations identified in patients are found at the immature differentiation stage CD34+CD38-. In patients, several molecular clones could coexist at this stage. In addition, mutations in gene splicing and epigenetic regulation are frequently first acquired in the most immature hematopoietic cells of MDS patients. We found that certain mutations, acquired in a second time, are distributed unevenly in different hematopoietic compartment and may have an impact on hematopoietic differentiation. Finally, we showed that the distribution of molecular clones evolves over time. In response to treatment with Lenalidomide, it has also been observed a rapid evolution of clonal architecture that can be linked to patient response status. These results tend to confirm the genetic but also functional heterogeneity in MDS. We have identified new mutations involved in the pathogenesis of MDS. We observed an early clonal dominance in MDS because of the acquisition of all mutations in immature hematopoietic cells. However, different hematopoietic populations can have different genotype. Finally, the architecture of mutations could be modifying during the course of the disease.
|
3 |
The evolution of inter-genomic variation in arbuscular mycorrhizal fungiBoon, Eva 03 1900 (has links)
Contexte: Les champignons mycorhiziens à arbuscules (AMF) établissent des relations symbiotiques avec la plupart des plantes grâce à leurs réseaux d’hyphes qui s’associent avec les racines de leurs hôtes. De précédentes études ont révélé des niveaux de variation génétique extrêmes pour des loci spécifiques permettant de supposer que les AMF peuvent contenir des milliers de noyaux génétiquement divergents dans un même cytoplasme. Si aucun processus de reproduction sexuée n’a jusqu’ici été observé chez ces mycorhizes, on constate cependant que des niveaux élevés de variation génétique peuvent être maintenus à la fois par l’échange de noyaux entre hyphes et par des processus fréquents de recombinaison entre noyaux. Les AMF se propagent par l’intermédiaire de spores qui contiennent chacune un échantillon d’une population initiale de noyaux hétérogènes, directement hérités du mycélium parent. À notre connaissance les AMF sont les seuls organismes qui ne passent jamais par un stade mononucléaire, ce qui permet aux noyaux de diverger génétiquement dans un même cytoplasme. Ces aspects singuliers de la biologie des AMF rendent l’estimation de leur diversité génétique problématique. Ceci constitue un défi majeur pour les écologistes sur le terrain mais également pour les biologistes moléculaires dans leur laboratoire. Au-delà même des problématiques de diversité spécifique, l’amplitude du polymorphisme entre noyaux mycorhiziens est mal connue. Le travail proposé dans ce manuscrit de thèse explore donc les différents aspects de l’architecture génomique singulière des AMF.
Résultats
L’ampleur du polymorphisme intra-isolat a été déjà observée pour la grande sous-unité d’ARN ribosomal de l’isolat Glomus irregulare DAOM-197198 (précédemment identifié comme G. intraradices) et pour le gène de la polymerase1-like (PLS) de Glomus etunicatum isolat NPI. Dans un premier temps, nous avons pu confirmer ces résultats et nous avons également pu constater que ces variations étaient transcrites. Nous avons ensuite pu mettre en évidence la présence d’un goulot d’étranglement génétique au moment de la sporulation pour le locus PLS chez l’espèce G. etunicatum illustrant les importants effets d’échantillonnage qui se produisaient entre chaque génération de spore. Enfin, nous avons estimé la différentiation génétique des AMF en utilisant à la fois les réseaux de gènes appliqués aux données de séquençage haut-débit ainsi que cinq nouveaux marqueurs génomiques en copie unique. Ces analyses révèlent que la différenciation génomique est présente de manière systématique dans deux espèces (G. irregulare et G. diaphanum).
Conclusions
Les résultats de cette thèse fournissent des preuves supplémentaires en faveur du scénario d’une différenciation génomique entre noyaux au sein du même isolat mycorhizien. Ainsi, au moins trois membres du genre Glomus, G. irregulare, G. diaphanum and G. etunicatum, apparaissent comme des organismes dont l’organisation des génomes ne peut pas être décrit d’après un modèle Mendélien strict, ce qui corrobore l’hypothèse que les noyaux mycorhiziens génétiquement différenciés forment un pangenome. / Background: Arbuscular mycorrhizal fungi (AMF) are root-inhabiting fungi whose hyphal networks form symbioses with plants. Previous studies have revealed extremely high levels of genetic variation for some loci, which has lead to the proposition that AMF contain thousands of genetically divergent nuclei that share the same cytoplasm, i.e. they are heterokaryotic coenocytes. No reproductive stage has as yet been observed in AMF, yet evidence is accumulating that the observed high levels of diversity could be maintained by the exchange of nuclei between hyphal systems and (meiotic) recombination. AMF spores contain varying fractions of this heterogeneous population of nuclei, which migrate directly from the parent mycelium. To our knowledge, AMF are the only organisms that never pass through a single nucleus stage in their life cycle, which allows nuclei to diverge into genetically distinct nuclei within the same cytoplasm. Thus, estimating genetic diversity in arbuscular mycorrhizal fungi (AMF) is a major challenge, not only for ecologists in the field but also for molecular biologists in the lab. It is unclear what the extent of polymorphism is in AMF genomes. The present thesis investigates different aspects of this peculiar genome organization.
Results
The second chapter in this thesis confirms the extensive intra-isolate polymorphism that was previously observed for large subunit rDNA (in G. irregulare DAOM-197198) and the polymerase1-like gene, PLS (in G. etunicatum), and shows that this polymorphism is transcribed. In the third chapter I report the presence of a bottleneck of genetic variation at sporulation for the PLS locus, in G. etunicatum. Analyses in the fourth chapter, based on a conservative network-based clustering approach and five novel single copy genomic markers, reveal extensive genome-wide patterns of diversity in two different AMF species (G. irregulare and G. diaphanum).
Conclusions
The results from this thesis provide additional evidence in favor of genome differentiation between nuclei in the same isolate for AMF. Thus, at least three members of the Glomus genus, G. irregulare, G. diaphanum and G. etunicatum appear to be organisms whose genome organization cannot be described by a single genome sequence: genetically differentiated nuclei in AMF form a pangenome.
|
4 |
The evolution of inter-genomic variation in arbuscular mycorrhizal fungiBoon, Eva 03 1900 (has links)
Contexte: Les champignons mycorhiziens à arbuscules (AMF) établissent des relations symbiotiques avec la plupart des plantes grâce à leurs réseaux d’hyphes qui s’associent avec les racines de leurs hôtes. De précédentes études ont révélé des niveaux de variation génétique extrêmes pour des loci spécifiques permettant de supposer que les AMF peuvent contenir des milliers de noyaux génétiquement divergents dans un même cytoplasme. Si aucun processus de reproduction sexuée n’a jusqu’ici été observé chez ces mycorhizes, on constate cependant que des niveaux élevés de variation génétique peuvent être maintenus à la fois par l’échange de noyaux entre hyphes et par des processus fréquents de recombinaison entre noyaux. Les AMF se propagent par l’intermédiaire de spores qui contiennent chacune un échantillon d’une population initiale de noyaux hétérogènes, directement hérités du mycélium parent. À notre connaissance les AMF sont les seuls organismes qui ne passent jamais par un stade mononucléaire, ce qui permet aux noyaux de diverger génétiquement dans un même cytoplasme. Ces aspects singuliers de la biologie des AMF rendent l’estimation de leur diversité génétique problématique. Ceci constitue un défi majeur pour les écologistes sur le terrain mais également pour les biologistes moléculaires dans leur laboratoire. Au-delà même des problématiques de diversité spécifique, l’amplitude du polymorphisme entre noyaux mycorhiziens est mal connue. Le travail proposé dans ce manuscrit de thèse explore donc les différents aspects de l’architecture génomique singulière des AMF.
Résultats
L’ampleur du polymorphisme intra-isolat a été déjà observée pour la grande sous-unité d’ARN ribosomal de l’isolat Glomus irregulare DAOM-197198 (précédemment identifié comme G. intraradices) et pour le gène de la polymerase1-like (PLS) de Glomus etunicatum isolat NPI. Dans un premier temps, nous avons pu confirmer ces résultats et nous avons également pu constater que ces variations étaient transcrites. Nous avons ensuite pu mettre en évidence la présence d’un goulot d’étranglement génétique au moment de la sporulation pour le locus PLS chez l’espèce G. etunicatum illustrant les importants effets d’échantillonnage qui se produisaient entre chaque génération de spore. Enfin, nous avons estimé la différentiation génétique des AMF en utilisant à la fois les réseaux de gènes appliqués aux données de séquençage haut-débit ainsi que cinq nouveaux marqueurs génomiques en copie unique. Ces analyses révèlent que la différenciation génomique est présente de manière systématique dans deux espèces (G. irregulare et G. diaphanum).
Conclusions
Les résultats de cette thèse fournissent des preuves supplémentaires en faveur du scénario d’une différenciation génomique entre noyaux au sein du même isolat mycorhizien. Ainsi, au moins trois membres du genre Glomus, G. irregulare, G. diaphanum and G. etunicatum, apparaissent comme des organismes dont l’organisation des génomes ne peut pas être décrit d’après un modèle Mendélien strict, ce qui corrobore l’hypothèse que les noyaux mycorhiziens génétiquement différenciés forment un pangenome. / Background: Arbuscular mycorrhizal fungi (AMF) are root-inhabiting fungi whose hyphal networks form symbioses with plants. Previous studies have revealed extremely high levels of genetic variation for some loci, which has lead to the proposition that AMF contain thousands of genetically divergent nuclei that share the same cytoplasm, i.e. they are heterokaryotic coenocytes. No reproductive stage has as yet been observed in AMF, yet evidence is accumulating that the observed high levels of diversity could be maintained by the exchange of nuclei between hyphal systems and (meiotic) recombination. AMF spores contain varying fractions of this heterogeneous population of nuclei, which migrate directly from the parent mycelium. To our knowledge, AMF are the only organisms that never pass through a single nucleus stage in their life cycle, which allows nuclei to diverge into genetically distinct nuclei within the same cytoplasm. Thus, estimating genetic diversity in arbuscular mycorrhizal fungi (AMF) is a major challenge, not only for ecologists in the field but also for molecular biologists in the lab. It is unclear what the extent of polymorphism is in AMF genomes. The present thesis investigates different aspects of this peculiar genome organization.
Results
The second chapter in this thesis confirms the extensive intra-isolate polymorphism that was previously observed for large subunit rDNA (in G. irregulare DAOM-197198) and the polymerase1-like gene, PLS (in G. etunicatum), and shows that this polymorphism is transcribed. In the third chapter I report the presence of a bottleneck of genetic variation at sporulation for the PLS locus, in G. etunicatum. Analyses in the fourth chapter, based on a conservative network-based clustering approach and five novel single copy genomic markers, reveal extensive genome-wide patterns of diversity in two different AMF species (G. irregulare and G. diaphanum).
Conclusions
The results from this thesis provide additional evidence in favor of genome differentiation between nuclei in the same isolate for AMF. Thus, at least three members of the Glomus genus, G. irregulare, G. diaphanum and G. etunicatum appear to be organisms whose genome organization cannot be described by a single genome sequence: genetically differentiated nuclei in AMF form a pangenome.
|
Page generated in 0.044 seconds