1 |
Analyse et commande des systèmes multidimensionnels / Analysis and control of multidimensional systemsGhamgui, Mariem 20 September 2013 (has links)
Cette thèse se situe dans le cadre de l'analyse et de la commande des systèmes multidimensionnels. Ce sont des systèmes où l'information se propage dans plusieurs directions indépendantes les unes des autres (par exemple une dimension d'espace et une de temps). Les contributions présentées dans ce mémoire portent d'une part sur la commande des systèmes 2D discrets ou continus, à retards constants ou variables, et d'autre part sur la synthèse de loi de commande par retour d'état robuste des systèmes nD hybrides incertains dont l'incertitude est décrite sous forme de représentation rationnelle implicite (ILFR). Les travaux présentés utilisent deux approches, l'une basée sur le polynôme caractéristique et l'autre sur les techniques de Lyapunov. Pour les systèmes 2D à retards discrets ou continus nous avons utilisé l'approche basée sur des fonctionnelles de Lyapunov. Des conditions suffisantes de stabilité et de stabilisation par retour d'état, dépendantes du retard, sont établies. Outre la notion de stabilité, la notion de performance du type H∞ est traitée afin de résoudre le problème de rejet de perturbations pour cette classe de systèmes. Nous avons ensuite proposé un cadre assez général pour l'analyse en stabilité des systèmes nD hybrides, en utilisant la S-procédure, permettant l'obtention de conditions sous forme de LMIs faciles à exploiter numériquement. Nous avons également proposé des conditions de stabilité et de stabilisation robustes pour les systèmes nD hybrides incertains dont l'incertitude est du type LFR implicites. / This thesis deals with the analysis and the control of multidimensional systems. These systems can be defined as the classe of systems where the information is propagated in several independent direction. For instance, a 2D system with a dimension corresponding to space and, the other one to time. The contributions presented in this work focuses, on one hand, on the control of 2D discrete or continuous systems with constant or variable delays and on the other hand, on the synthesis of robust state feedback controllers for nD hybrid uncertain systems including parameter uncertainties complying with an implicit linear fractional representation (ILFR). Two approaches are used. One is based on the characteristic polynomial and the other on Lyapunov techniques. Sufficient conditions for stability and stabilization are established for 2D delayed discrete or continuous systems using Lyapunov approach. Conditions to insure both stability and a prescribed H∞ performance level are given for this class of systems. Then, a general framework for the establishment of computationally tractable LMI conditions to analyse the stability of nD hybrid systems is proposed. Robust stability and stabilization conditions are then established for nD hybrid uncertain systems. The uncertainties comply with an (ILFR) description.
|
2 |
Commande de robots manipulateurs basée sur le modèle de Takagi-Sugeno : nouvelle approche pour le suivi de trajectoire / Control of robots manipulators based the Takagi-Sugeno model : new approach for tracking controlNguyen, Thi Van Anh 04 October 2019 (has links)
Ce travail présente une nouvelle approche de synthèse de la commande non linéaire en suivi de trajectoire de robots manipulateurs. Malgré la richesse de la littérature dans le domaine, le problème n'a pas encore été traité de manière adéquate : en raison de l'existence inévitable dans les applications pratiques de perturbations et incertitudes telles que les forces de frottement, des perturbations externes ou les variations des paramètres il est difficile d'assurer un suivi de trajectoire de haute précision. Afin de résoudre ce problème, nous proposons tout d'abord une méthode de commande prenant en compte la performance H∞ pour le suivi de trajectoire d'un robot manipulateur. Deuxièmement, nous proposons un nouveau cadre pour la synthèse de lois de commande combinant une action anticipatrice et un retour d'état basée sur une représentation sous forme Takagi-Sugeno descripteur de la dynamique du manipulateur. Un avantage de la représentation choisie est de pouvoir simultanément simplifier le calcul des gains de commande à l'aide de LMI de dimension réduite et de réduire la complexité du correcteur en agissant sur le nombre de règles du modèle de Takagi-Sugeno. Basé sur la théorie de la stabilité de Lyapunov, le réglage du correcteur est formulé comme un problème d'optimisation LMI (inégalité matricielle linéaire). Les résultats obtenus en simulation effectuée avec un modèle de manipulateur série développé dans l'environnement Simscape MultibodyTM de Matlab R démontrent clairement l'efficacité de la méthode proposée en comparaison avec le régulateur PID et la commande CTC (Computed Torque Control). / This work presents a new design approach for trajectory tracking control of robot manipulators. In spite of the rich literature in the field, the problem has not yet been addressed adequately due to the lack of an effective control design. In general, it is difficult to adopt design to achieve high-precision tracking control due to the uncertainties in practical applications, such as friction forces, external disturbances and parameter variations. In order to cope this problem, we propose first control with H∞ performance to reference trajectory tracking control of two degrees of freedom robot. Secondly, we propose a new design framework with parametric uncertainties and unknown disturbances by using the feedback and the feedforward controllers. Using the descriptor Takagi-Sugeno systems, the design goal is to achieve a guaranteed tracking performance while signicantly reducing the numerical complexity of the designed controller through a robust control scheme. Based on Lyapunov stability theory, the control design is formulated as an LMI (linear matrix inequality) optimization problem. Simulation results carried out with a high-fidelity serial manipulator model embedded in the Simscape MultibodyTM environment of MatlabR clearly demonstrate the effectiveness of the proposed method by comparing with PID controller and computed torque controller.
|
Page generated in 0.0579 seconds