• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 582
  • 124
  • 76
  • 66
  • 54
  • 41
  • 38
  • 35
  • 17
  • 10
  • 10
  • 8
  • 7
  • 7
  • 6
  • Tagged with
  • 1315
  • 342
  • 246
  • 236
  • 149
  • 129
  • 122
  • 121
  • 120
  • 119
  • 94
  • 93
  • 88
  • 83
  • 71
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Resilience and vulnerability in communities around Mt Taranaki

Finnis, Kristen Kay, n/a January 2007 (has links)
The aim of this thesis is to examine the resilience and vulnerability of Taranaki communities to volcanic hazards, and to propose a strategy to ensure the safety and longevity of Taranaki residents in the event of an eruption. Mt Taranaki is a dormant volcano that is surrounded by a ring plain populated by over 100,000 people. The volcano has had an average eruptive cycle of 330 years, with the last eruption dated at ~1755 AD. Hazards include ash fall, lahars, debris avalanches and pyroclastic density currents. Inglewood, Stratford and Opunake are the largest population centres located in moderate to high hazard zones, and for this reason were chosen as the study communities. Resilience is defined as the capacity to respond to a hazard event by physically and psychologically recovering, adapting to, or changing to similar or better conditions than those experienced before the event. Vulnerability is defined to be people�s incapacity to cope with a hazardous event as a result of their personal characteristics. A person�s vulnerability and resilience is influenced by demographic variables, socio-cognitive variables and preparedness. Inglewood, Stratford and Opunake adults have good self-efficacy and action-coping use, fair risk perceptions, outcome expectancy and response efficacy, but poor understanding of event timing relative to eruption probability, critical awareness, preparedness and information-seeking intentions and preparedness levels. Preparedness is found to be influenced by residents� intentions to prepare, which in turn are influenced by critical awareness, action-coping and outcome expectancy. Taranaki students have a fair awareness of hazard and knowledge of correct response behaviours to various hazards. Preparedness, in terms of preparedness measures undertaken, emergency plans made and emergency practices in place, is low. Students who have participated in hazard-education programmes have a better knowledge of response behaviours, lower levels of hazard-related fear, and reported higher level of preparedness. Spatial analyses, carried out to determine the geographic distribution of at-risk groups within the study communities, showed that the areas most at-risk tend to be those with the highest population densities. The spatial analysis was not as beneficial as expected, due to small data sets, but did provide some results to be considered as a basis for further research. Effective public education can be achieved when delivered to a set of guidelines, such as providing information regularly through multiple media and sources, ensuring consistent messages, targeting information to at-risk groups and monitoring programme effectiveness. Community capacity building projects decrease aspects of vulnerability and build resilience by working at a local scale and targeting at-risk groups. Psychological preparedness education helps citizens to mentally prepare for an event and should be a component of all projects. The proposed strategy calls for (a) forming partnerships with relevant stakeholders to assist with public education, research, and funding, (b) further research into the characteristics of Taranaki communities and effective public education campaigns, (c) the development and implementation of a public education schedule and projects that build community capacity, and d) long-term planning, periodic revision of programmes and consistent public engagement.
262

Measuring and modelling of volcanic pollutants from White Island and Ruapehu volcanoes: assessment of related hazard in the North Island

Grunewald, Uwe January 2007 (has links)
White Island and Ruapehu are currently the most active volcanoes in New Zealand. During non-eruptive periods, intense quiescent degassing through fumaroles can occur. The current project studies the quiescent degassing plumes, including aerosol sampling on White Island and dispersion modelling of SO₂ and PM₁₀ from White Island and Ruapehu volcanoes. Aerosol sampling from fumaroles at the crater floor on White Island volcano was carried out on 9 February and 6 April 2005. The exposed filters were analysed for various anions and cations and the particle mass concentration and molar concentration determined. Major elemental constituents were sodium and chlorine (Na⁺: 413 µg m⁻³, Cl⁻: 1520 µg m⁻³), which show best correlation at both sampling sessions. Other ions detected, with little correlation, are Ca²⁺, PO₄³⁻ and to a certain extent Mg²⁺. Other constituents found, which cannot correlate explicitly to other ions, are K⁺, NH₄⁺, NO₃⁻, and SO₄²⁻. SEM study of one exposed filter was performed and mainly NaCl particles could be distinguished due to their well-defined cubic shape. The Air Pollution Model (TAPM) was used for dispersion modelling of SO₂ (models 1-4) and PM₁₀ (models 5 and 6) from White Island and Ruapehu volcanoes. Annual modelling was performed using different parameters of emission rate, exit temperature and exit velocity. The resulting plume dispersions show relatively low concentrations at ground level ≤10 m), particularly for the models of PM₁₀ dispersion. TAPM calculated the highest SO₂ ground level concentrations with model 4, where the NES values of 350 and 570 µg m⁻³ were exceeded several times. The data was then used for detailed hazard assessment of urban population in the North Island. The meteorological data from annual modelling was used for model evaluation and compared with observation data from different weather stations by statistical calculations. Overall, TAPM performed well with most good and very good results. To evaluate SO₂ dispersion modelling, airborne plume measurements were carried out on 22 November 2006 by plume traverses at 3, 10 and 20 km. Although there is some variation, the calculated correlation coefficients indicate good model results for two plume traverses at 3 and 20 km and one plume traverse at 10 km. The meteorological data was also used for model evaluation, and the results indicate good model performance. TAPM is therefore suggested for future studies when more observation data are available to verify the calculated model data.
263

A model to integrate the management of hazards and disasters in the national sustainable development planning of the Maldives

Jameel, Ahmed January 2007 (has links)
The small land area of the islands of the Maldives, combined with high population density, makes the communities of these islands vulnerable to natural disaster events such as flooding and tsunami. The Indian Ocean Tsunami on 26 December 2004 impacted 69 islands of the Maldives, killing 82 people, leaving 26 people missing and 15, 000 people internally displaced, making it the worst disaster in recorded history. Following the event, the Government of the Maldives announced a Safer Island Development Programme which seeks to provide the infrastructure necessary to adapt to natural disasters. The key focus of disaster management is to reduce the vulnerability of the communities exposed to hazards and risks, and to help them to enhance their resilience. Efforts have been made to develop safer and sustainable communities in all corners of the developed and developing worlds. New Zealand Government announced its effort to build safe and secure communities in 2007 while at a local level the Christchurch City Council published the Safer Christchurch Strategy in 2005. Overseas, the Community Strategy 2000, outlines the vision of "A safe and strong Island" at Isle of Wight United Kingdom. The islands of the Maldives have natural characteristics which make them vulnerable to disasters such as tsunami. This research has been able to identify the relationship between these characteristics and the natural vulnerability of the islands using the data that was collected following the Indian Ocean Tsunami. Out of 11 island, that have been identified for the Safer Islands Development Programme, one island is found to have very high natural vulnerability and 5 islands a high natural vulnerability, from the island vulnerability index model developed through this study. The Island Vulnerability Index model could be used to enhance the present Safer Island Development Programme island selection criteria, to reduce the possibility of 'building risk' into the infrastructure development on the islands. The index could also be used in the Environmental Impact Assessment studies to address the issue of disasters, effective resources allocation in the Public Sector Infrastructure Programme for 'building back better', and resource identification in land use planning.
264

Delineating debris-flow hazards on alluvial fans in the Coromandel and Kaimai regions, New Zealand, using GIS.

Welsh, Andrew James January 2007 (has links)
Debris-flows pose serious hazards to communities in mountainous regions of the world and are often responsible for loss of life and damages to infrastructure. Characterised by high flow velocity, large impact forces and long runout, debris-flows have potential discharges several times greater than clear water flood discharges and possess much greater erosive and destructive potential. In combination with poor temporal predictability, they present a significant hazard to settlements, transport routes and other infrastructure located at the drainage points (fan-heads) of watersheds. Thus, it is important that areas vulnerable to debris-flows are identified in order to aid decisions on appropriate land-uses for alluvial fans. This research has developed and tested a new GIS-based procedure for identifying areas prone to debris-flow hazards in the Coromandel/Kaimai region, North Island, New Zealand. The procedure was developed using ESRI Arc View software, utilising the NZ 25 x 25 m DEM as the primary input. When run, it enabled watersheds and their associated morphometric parameters to be derived for selected streams in the study area. Two specific parameters, Melton ratio (R) and watershed length were then correlated against field evidence for debris-flows, debris-floods and fluvial processes at stream watershed locations in the study area. Overall, strong relationships were observed to exist between the evidence observed for these phenomena and the parameters, thus confirming the utility of the GIS procedure for the preliminary identification of hydrogeomorphic hazards such as debris-flow in the Coromandel/Kaimai region study area. In consideration of the results, the procedure could prove a useful tool for regional councils and CDEM groups in regional debris-flow hazard assessment for the identification of existing developments at risk of debris-flow disaster. Furthermore, the procedure could be used to provide justification for subsequent, more intensive local investigations to fully quantify the risk to people and property at stream fan and watershed locations in such areas.
265

A reconnaissance natural hazard assessment of Lakes Lyndon, Coleridge and Tekapo

Komen, Anita Louise January 2008 (has links)
The Canterbury Region is susceptible to a variety of natural hazards, including earthquakes, landslides and climate hazards. Increasing population and tourism within the region is driving development pressures and as more and more development occurs, the risk from natural hazards increases. In order to avoid development occurring in unacceptably vulnerable locations, natural hazard assessments are required. This study is a reconnaissance natural hazard assessment of Lakes Lyndon, Coleridge and Tekapo. There is restricted potential for development at Lake Lyndon, because the land surrounding the lake is owned by the Crown and has a number of development restrictions. However, there is the potential for conservation or recreation-linked development to occur. There is more potential for development at Lake Coleridge. Most of the land surrounding the lake is privately owned and has less development restrictions. The majority of land surrounding Lake Tekapo is divided into Crown-owned pastoral leases, which are protected from development, such as subdivision. However, there are substantial areas around the lake, which are privately owned and, therefore, have potential for development. Earthquake, landslide and climate hazards are the main natural hazards threatening Lakes Lyndon, Coleridge and Tekapo. The lakes are situated in a zone of active earth deformation in which large and relatively frequent earthquakes are produced. A large number of active faults lie within 15 km of each lake, which are capable of producing M7 or larger earthquakes. Ground shaking, liquefaction, landslides, tsunami and seiches are among the consequences of earthquakes, all of which have the potential to cause severe damage to lives, lifelines and infrastructure. Landslides are also common in the landscape surrounding the lakes. The majority of slopes surrounding the lakes are at significant risk from earthquake-induced failure under moderate to strong earthquake shaking. This level of shaking is expected to occur in any 50 year period around Lakes Lyndon and Coleridge, and in any 150 year period around Lake Tekapo. Injuries, fatalities and property damage can occur directly from landslide impact or from indirect effects such as flooding from landslide-generated tsunami or from landslide dam outbreaks. Lakes Lyndon, Coleridge and Tekapo are also susceptible to climate hazards, such as high winds, drought, heavy snowfall and heavy rainfall, which can lead to landslides and flooding. Future climate change due to global warming is most likely going to affect patterns of frequency and magnitudes of extreme weather events, leading to an increase in climate hazards. Before development is permitted around the lakes, it is essential that each of these hazards is considered so that unacceptably vulnerable areas can be avoided.
266

The vulnerability of New Zealand lifelines infrastructure to ashfall.

Barnard, Scott Trevor January 2010 (has links)
Risks posed by geohazards to urban centres are constantly increasing, due to the continuous increase in population and associated infrastructure. A major risk to North Island urban centres is impacts from volcanic ashfall. This study analyses the vulnerabilities of selected New Zealand lifelines infrastructure to volcanic ash, to better understand and mitigate these risks. Telecommunications and wastewater networks are assessed, as is the vulnerability of Auckland Airport and grounded aircraft. The ability of vehicles to drive on ash covered roads is also tested, to determine the extent to which emergency services, utility providers and the public will be able to travel during and immediately after ashfall. Finally, air-conditioners have been identified as a significant vulnerability during ashfall, due to the high dependence on cooling for infrastructure and lifelines providers. These are examined to quantify the effects of ashfall on their performance. Each of the selected infrastructure types is assessed through a review of past impacts of ashfall, and experimentation either in the field or under laboratory conditions. Where appropriate, mitigation options that reduce identified vulnerabilities are considered. In most cases these options are operational rather than physical engineering solutions, and indicate pre-planning and response requirements. Key recommended mitigation options include the acquirement or strategic relocation of resources prior to ashfall, regular cleaning and maintenance of essential air conditioners during ashfall to enable their continued use, access to appropriate vehicles for utility providers to reach infrastructure, and discharge of untreated wastewater into Waitemata harbour at Orakei during ashfall on Auckland, to preserve the ability to continue treating wastewater at the Mangere treatment plant
267

Reconceptualising disasters : lessons from the Samoan experience : a thesis submitted in fulfilment of the requirements for the degree of Master of Arts in Geography at the University of Canterbury /

Watson, Beth Eleanor. January 2007 (has links)
Thesis (M. A.)--University of Canterbury, 2007. / Typescript (photocopy). Includes bibliographical references (p. 162-185). Also available via the World Wide Web.
268

Tectonic geomorphology and siesmic hazard of the Mt Fyffe section of the Hope Fault : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Engineering Geology at the University of Canterbury /

Coulter, Roseanne F. January 2007 (has links)
Thesis (M. Sc.)--University of Canterbury, 2007. / Typescript (photocopy). Accompanied by folded col. map (56 x 104 cm.) in back pocket. Includes bibliographical references (leaves 104-111). Also available via the World Wide Web.
269

Geology of the Tahoe City sub-basin, Lake Tahoe, California-Nevada

Muehlberg, Jessica M. January 2007 (has links)
Thesis (M.S.)--University of Nevada, Reno, 2007. / "May, 2007." Includes bibliographical references (leaves 90-95). Online version available on the World Wide Web.
270

Development of a GIS-based seismic hazard screening tool

Wilding, Andrew J., January 2008 (has links) (PDF)
Thesis (M.S.)--Missouri University of Science and Technology, 2008. / Vita. The print version of this thesis includes an accompanying CD-ROM. "Included with this Thesis is a CD-ROM, which contain the VISUAL BASIC CODE for the S4 application...The included code is divided into three files: a) VISUAL BASIC Module Code, b) VISUAL BASIC Form Code, and c) VISUAL BASIC FFT Code."--leaf 158. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed April 25, 2008) Includes bibliographical references (p. 160-172).

Page generated in 0.0254 seconds