• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling Hypertrophic Cardiomyopathy Using Genome-Edited Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Response to Dynamic Mechanotransduction

Strimaityte, Dovile 05 1900 (has links)
Familial hypertrophic cardiomyopathy (HCM) is a genetic disease largely caused by a mutation in myosin binding protein C (MYBPC3) and it affects about 1:500 population leading to arrhythmic sudden death, heart failure, and atrial fibrillation. MYBPC3 activates calcium-induced actin-myosin filament sliding within the cardiac sarcomere, creating the force necessary for heart contraction. The underlying molecular mechanisms causing HCM phenotype remain elusive, therefore, there is an urgent need for a reliable in vitro human HCM model to investigate the pathogenesis of HCM. This study utilized isogenic human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with MYBPC3 gene mutation (wildtype, heterozygous, homozygous) and further micropatterned them into fiber-like structures on polyacrylamide hydrogels of physiological and fibrotic-like stiffnesses. Cells were cultured for an extended culture time up to 60 days and their morphology/attachment, contractility, and calcium transient were extensively and carefully evaluated. It was found that MYBPC3 knockout cells maintained the highest contraction amplitude, but had increased contraction, and relaxation durations, decreased calcium transient amplitude, as well as time to peak and decay times over the culture period in comparison to the isogenic wildtype. Overall, this study demonstrates that hiPSC-CMs can be successfully patterned and cultured for an extended time on hydrogels forming end-to-end connections, which can be served as a simple yet effective in vitro human model for studying mechanical dysfunction of HCM.

Page generated in 0.1595 seconds