• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 10
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 67
  • 44
  • 31
  • 17
  • 14
  • 13
  • 13
  • 13
  • 11
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Dedicated and reconfigurable hardware accelerators for high efficiency video coding standard / Aceleradores dedicados e reconfiguráveis para o padrão high efficiency video coding (HEVC)

Diniz, Claudio Machado January 2015 (has links)
A demanda por vídeos de resolução ultra-alta (além de 1920x1080 pontos) levou à necessidade de desenvolvimento de padrões de codificação de vídeo novos e mais eficientes para prover alta eficiência de compressão. O novo padrão High Efficiency Video Coding (HEVC), publicado em 2013, atinge o dobro da eficiência de compressão (ou 50% de redução no tamanho do vídeo codificado) comparado com o padrão mais eficiente até então, e mais utilizado no mercado, o padrão H.264/AVC (Advanced Video Coding). O HEVC atinge este resultado ao custo de uma elevação da complexidade computacional das ferramentas inseridas no codificador e decodificador. O aumento do esforço computacional do padrão HEVC e as limitações de potência das tecnologias de fabricação em silício atuais tornam essencial o desenvolvimento de aceleradores de hardware para partes importantes da aplicação do HEVC. Aceleradores de hardware fornecem maior desempenho e eficiência energética para aplicações específicas que os processadores de propósito geral. Uma análise da aplicação do HEVC realizada neste trabalho identificou as partes mais importantes do HEVC do ponto de vista do esforço computacional, a saber, o Filtro de Interpolação de Ponto Fracionário, o Filtro de Deblocagem e o cálculo da Soma das Diferenças Absolutas. Uma análise de tempo de execução do Filtro de Interpolação indica um grande potencial de economia de potência/energia pela adaptação do acelerador de hardware à carga de trabalho variável. Esta tese introduz novas contribuições no tema de aceleradores dedicados e reconfiguráveis para o padrão HEVC. Aceleradores de hardware dedicados para o Filtro de Interpolação de Pixel Fracionário, para o Filtro de Deblocagem, e para o cálculo da Soma das Diferenças Absolutas, são propostos, projetados e avaliados nesta tese. A arquitetura de hardware proposta para o filtro de interpolação atinge taxa de processamento similar ao estado da arte, enquanto reduz a área do hardware para este bloco em 50%. A arquitetura de hardware proposta para o filtro de deblocagem também atinge taxa de processamento similar ao estado da arte com uma redução de 5X a 6X na contagem de gates e uma redução de 3X na dissipação de potência. A nova análise comparativa proposta para os elementos de processamento do cálculo da Soma das Diferenças Absolutas introduz diversas alternativas de projeto de arquitetura com diferentes resultados de área, desempenho e potência. A nova arquitetura reconfigurável para o filtro de interpolação do padrão HEVC fornece 57% de redução de área em tempo de projeto e adaptação da potência/energia em tempo-real a cada imagem processada, o que ainda não é suportado pelas arquiteturas do estado da arte para o filtro de interpolação. Adicionalmente, a tese propõe um novo esquema de alocação de aceleradores em tempo-real para arquiteturas reconfiguráveis baseadas em tiles de processamento e de grão-misto, o que reduz em 44% (23% em média) o “overhead” de comunicação comparado com uma estratégia first-fit com reuso de datapaths, para números diferentes de tiles e organizações internas de tile. Este esquema de alocação leva em conta a arquitetura interna para alocar aceleradores de uma maneira mais eficiente, evitando e minimizando a comunicação entre tiles. Os aceleradores e técnicas dedicadas e reconfiguráveis propostos nesta tese proporcionam implementações de codificadores de vídeo de nova geração, além do HEVC, com melhor área, desempenho e eficiência em potência. / The demand for ultra-high resolution video (beyond 1920x1080 pixels) led to the need of developing new and more efficient video coding standards to provide high compression efficiency. The High Efficiency Video Coding (HEVC) standard, published in 2013, reaches double compression efficiency (or 50% reduction in size of coded video) compared to the most efficient video coding standard at that time, and most used in the market, the H.264/AVC (Advanced Video Coding) standard. HEVC reaches this result at the cost of high computational effort of the tools included in the encoder and decoder. The increased computational effort of HEVC standard and the power limitations of current silicon fabrication technologies makes it essential to develop hardware accelerators for compute-intensive computational kernels of HEVC application. Hardware accelerators provide higher performance and energy efficiency than general purpose processors for specific applications. An HEVC application analysis conducted in this work identified the most compute-intensive kernels of HEVC, namely the Fractional-pixel Interpolation Filter, the Deblocking Filter and the Sum of Absolute Differences calculation. A run-time analysis on Interpolation Filter indicates a great potential of power/energy saving by adapting the hardware accelerator to the varying workload. This thesis introduces new contributions in the field of dedicated and reconfigurable hardware accelerators for HEVC standard. Dedicated hardware accelerators for the Fractional Pixel Interpolation Filter, the Deblocking Filter and the Sum of Absolute Differences calculation are herein proposed, designed and evaluated. The interpolation filter hardware architecture achieves throughput similar to the state of the art, while reducing hardware area by 50%. Our deblocking filter hardware architecture also achieves similar throughput compared to state of the art with a 5X to 6X reduction in gate count and 3X reduction in power dissipation. The thesis also does a new comparative analysis of Sum of Absolute Differences processing elements, in which various architecture design alternatives with different area, performance and power results were introduced. A novel reconfigurable interpolation filter hardware architecture for HEVC standard was developed, and it provides 57% design-time area reduction and run-time power/energy adaptation in a picture-by-picture basis, compared to the state-of-the-art. Additionally a run-time accelerator binding scheme is proposed for tile-based mixed-grained reconfigurable architectures, which reduces the communication overhead, compared to first-fit strategy with datapath reusing scheme, by up to 44% (23% on average) for different number of tiles and internal tile organizations. This run-time accelerator binding scheme is aware of the underlying architecture to bind datapaths in an efficient way, to avoid and minimize inter-tile communications. The new dedicated and reconfigurable hardware accelerators and techniques proposed in this thesis enable next-generation video coding standard implementations beyond HEVC with improved area, performance, and power efficiency.
22

Machine learning mode decision for complexity reduction and scaling in video applications

Grellert, Mateus January 2018 (has links)
As recentes inovações em técnicas de Aprendizado de Máquina levaram a uma ampla utilização de modelos inteligentes para resolver problemas complexos que são especialmente difíceis de computar com algoritmos e estruturas de dados convencionais. Em particular, pesquisas recentes em Processamento de Imagens e Vídeo mostram que é possível desenvolver modelos de Aprendizado de Máquina que realizam reconhecimento de objetos e até mesmo de ações com altos graus de confiança. Além disso, os últimos avanços em algoritmos de treinamento para Redes Neurais Profundas (Deep Learning Neural Networks) estabeleceram um importante marco no estudo de Aprendizado de Máquina, levando a descobertas promissoras em Visão Computacional e outras aplicações. Estudos recentes apontam que também é possível desenvolver modelos inteligentes capazes de reduzir drasticamente o espaço de otimização do modo de decisão em codificadores de vídeo com perdas irrelevantes em eficiência de compressão. Todos esses fatos indicam que Aprendizado de Máquina para redução de complexidade em aplicações de vídeo é uma área promissora para pesquisa. O objetivo desta tese é investigar técnicas baseadas em aprendizado para reduzir a complexidade das decisões da codificação HEVC, com foco em aplicações de codificação e transcodificação rápidas. Um perfilamento da complexidade em codificadores é inicialmente apresentado, a fim de identificar as tarefas que requerem prioridade para atingir o objetivo dessa tese. A partir disso, diversas variáveis e métricas são extraídas durante os processos de codificação e decodificação para avaliar a correlação entre essas variáveis e as decisões de codificação associadas a essas tarefas. Em seguida, técnicas de Aprendizado de Máquina são empregadas para construir classificadores que utilizam a informação coletada para prever o resultado dessas decisões, eliminando o custo computacional necessário para computá-las. As soluções de codificação e transcodificação foram desenvolvidas separadamente, pois o tipo de informação é diferente em cada caso, mas a mesma metologia foi aplicada em ambos os casos. Além disso, mecanismos de complexidade escalável foram desenvolvidos para permitir o melhor desempenho taxa-compressão para um dado valor de redução de complexidade. Resultados experimentais apontam que as soluções desenvolvidas para codificação rápida atingiram reduções de complexidade entre 37% e 78% na média, com perdas de qualidade entre 0.04% e 4.8% (medidos em Bjontegaard Delta Bitrate – BD-BR). Já as soluções para trancodificação rápida apresentaram uma redução de 43% até 67% na complexidade, com BD-BR entre 0.34% e 1.7% na média. Comparações com o estado da arte confirmam a eficácia dos métodos desenvolvidos, visto que são capazes de superar os resultados atingidos por soluções similares. / The recent innovations in Machine Learning techniques have led to a large utilization of intelligent models to solve complex problems that are especially hard to compute with traditional data structures and algorithms. In particular, the current research on Image and Video Processing shows that it is possible to design Machine Learning models that perform object recognition and even action recognition with high confidence levels. In addition, the latest progress on training algorithms for Deep Learning Neural Networks was also an important milestone in Machine Learning, leading to prominent discoveries in Computer Vision and other applications. Recent studies have also shown that it is possible to design intelligent models capable of drastically reducing the optimization space of mode decision in video encoders with minor losses in coding efficiency. All these facts indicate that Machine Learning for complexity reduction in visual applications is a very promising field of study. The goal of this thesis is to investigate learning-based techniques to reduce the complexity of the HEVC encoding decisions, focusing on fast video encoding and transcoding applications. A complexity profiling of HEVC is first presented to identify the tasks that must be prioritized to accomplish our objective. Several variables and metrics are then extracted during the encoding and decoding processes to assess their correlation with the encoding decisions associated with these tasks. Next, Machine Learning techniques are employed to construct classifiers that make use of this information to accurately predict the outcome of these decisions, eliminating the timeconsuming operations required to compute them. The fast encoding and transcoding solutions were developed separately, as the source of information is different on each case, but the same methodology was followed in both cases. In addition, mechanisms for complexity scalability were developed to provide the best rate-distortion performance given a target complexity reduction. Experimental results demonstrated that the designed fast encoding solutions achieve time savings of 37% up to 78% on average, with Bjontegaard Delta Bitrate (BD-BR) increments between 0.04% and 4.8%. In the transcoding results, a complexity reduction ranging from 43% to 67% was observed, with average BD-BR increments from 0.34% up to 1.7%. Comparisons with state of the art confirm the efficacy of the designed methods, as they outperform the results achieved by related solutions.
23

Machine learning mode decision for complexity reduction and scaling in video applications

Grellert, Mateus January 2018 (has links)
As recentes inovações em técnicas de Aprendizado de Máquina levaram a uma ampla utilização de modelos inteligentes para resolver problemas complexos que são especialmente difíceis de computar com algoritmos e estruturas de dados convencionais. Em particular, pesquisas recentes em Processamento de Imagens e Vídeo mostram que é possível desenvolver modelos de Aprendizado de Máquina que realizam reconhecimento de objetos e até mesmo de ações com altos graus de confiança. Além disso, os últimos avanços em algoritmos de treinamento para Redes Neurais Profundas (Deep Learning Neural Networks) estabeleceram um importante marco no estudo de Aprendizado de Máquina, levando a descobertas promissoras em Visão Computacional e outras aplicações. Estudos recentes apontam que também é possível desenvolver modelos inteligentes capazes de reduzir drasticamente o espaço de otimização do modo de decisão em codificadores de vídeo com perdas irrelevantes em eficiência de compressão. Todos esses fatos indicam que Aprendizado de Máquina para redução de complexidade em aplicações de vídeo é uma área promissora para pesquisa. O objetivo desta tese é investigar técnicas baseadas em aprendizado para reduzir a complexidade das decisões da codificação HEVC, com foco em aplicações de codificação e transcodificação rápidas. Um perfilamento da complexidade em codificadores é inicialmente apresentado, a fim de identificar as tarefas que requerem prioridade para atingir o objetivo dessa tese. A partir disso, diversas variáveis e métricas são extraídas durante os processos de codificação e decodificação para avaliar a correlação entre essas variáveis e as decisões de codificação associadas a essas tarefas. Em seguida, técnicas de Aprendizado de Máquina são empregadas para construir classificadores que utilizam a informação coletada para prever o resultado dessas decisões, eliminando o custo computacional necessário para computá-las. As soluções de codificação e transcodificação foram desenvolvidas separadamente, pois o tipo de informação é diferente em cada caso, mas a mesma metologia foi aplicada em ambos os casos. Além disso, mecanismos de complexidade escalável foram desenvolvidos para permitir o melhor desempenho taxa-compressão para um dado valor de redução de complexidade. Resultados experimentais apontam que as soluções desenvolvidas para codificação rápida atingiram reduções de complexidade entre 37% e 78% na média, com perdas de qualidade entre 0.04% e 4.8% (medidos em Bjontegaard Delta Bitrate – BD-BR). Já as soluções para trancodificação rápida apresentaram uma redução de 43% até 67% na complexidade, com BD-BR entre 0.34% e 1.7% na média. Comparações com o estado da arte confirmam a eficácia dos métodos desenvolvidos, visto que são capazes de superar os resultados atingidos por soluções similares. / The recent innovations in Machine Learning techniques have led to a large utilization of intelligent models to solve complex problems that are especially hard to compute with traditional data structures and algorithms. In particular, the current research on Image and Video Processing shows that it is possible to design Machine Learning models that perform object recognition and even action recognition with high confidence levels. In addition, the latest progress on training algorithms for Deep Learning Neural Networks was also an important milestone in Machine Learning, leading to prominent discoveries in Computer Vision and other applications. Recent studies have also shown that it is possible to design intelligent models capable of drastically reducing the optimization space of mode decision in video encoders with minor losses in coding efficiency. All these facts indicate that Machine Learning for complexity reduction in visual applications is a very promising field of study. The goal of this thesis is to investigate learning-based techniques to reduce the complexity of the HEVC encoding decisions, focusing on fast video encoding and transcoding applications. A complexity profiling of HEVC is first presented to identify the tasks that must be prioritized to accomplish our objective. Several variables and metrics are then extracted during the encoding and decoding processes to assess their correlation with the encoding decisions associated with these tasks. Next, Machine Learning techniques are employed to construct classifiers that make use of this information to accurately predict the outcome of these decisions, eliminating the timeconsuming operations required to compute them. The fast encoding and transcoding solutions were developed separately, as the source of information is different on each case, but the same methodology was followed in both cases. In addition, mechanisms for complexity scalability were developed to provide the best rate-distortion performance given a target complexity reduction. Experimental results demonstrated that the designed fast encoding solutions achieve time savings of 37% up to 78% on average, with Bjontegaard Delta Bitrate (BD-BR) increments between 0.04% and 4.8%. In the transcoding results, a complexity reduction ranging from 43% to 67% was observed, with average BD-BR increments from 0.34% up to 1.7%. Comparisons with state of the art confirm the efficacy of the designed methods, as they outperform the results achieved by related solutions.
24

Computational effort analysis and control in High Efficiency Video Coding

Silva, Mateus Grellert da January 2014 (has links)
Codificadores HEVC impõem diversos desafios em aplicações embarcadas com restrições computacionais, especialmente quando há restrições de processamento em tempo real. Para tornar a codificação de vídeos HEVC factível nessas situações, é proposto neste trabalho um Sistema de Controle de Complexidade (SCC) que se adapta dinamicamente a capacidades computacionais varáveis. Considera-se que o codificador faz parte de um sistema maior, o qual informa suas restrições como disponibilidade da CPU e processamento alvo para o SCC. Para desenvolver um sistema eficiente, uma extensiva análise de complexidade dos principais parâmetros de codificação é realizada. Nessa análise, foi definida uma métrica livre de particularidades da plataforma de simulação, como hierarquia de memória e acesso concorrente à unidade de processamento. Essa métrica foi chamada de Complexidade Aritmética e pode ser facilmente adaptada para diversas plataformas. Os resultados mostram que o SCC proposto atinge ganhos médios de 40% em complexidade com penalidade mínima em eficiência de compressão e qualidade. As análises de adaptabilidade e controlabilidade mostraram que o SCC rapidamente se adapta a diferentes restrições, por exemplo, quando a disponibilidade de recursos computacionais varia dinamicamente enquanto um vídeo é codificado. Comparado com o estado da arte, o SCC atinge uma redução de 44% no tempo de codificação com penalidade de 2.9% na taxa de compressão e acréscimo de 6% em BD-bitrate. / HEVC encoders impose several challenges in resource-/computationally-constrained embedded applications, especially under real-time throughput constraints. To make HEVC encoding feasible in such scenarios, an adaptive Computation Management Scheme (CMS) that dynamically adapts to varying compute capabilities is proposed in this work. It is assumed that the encoder is part of a larger system, which informs to the CMS its restrictions and requirements, like CPU availability and target frame rate. To effectively develop and apply such a scheme, an extensive computational effort analysis of key encoding parameters of the HEVC is carried out. For this analysis, a platform-orthogonal metric called “Arithmetic Complexity” was developed, which can be widely adopted for various computing platforms. The achieved results illustrate that the proposed CMS provides 40% cycle savings on average at the cost of small RD penalties. The adaptability and controllability analyses show that the CMS quickly adapts to different constrained scenarios, e.g., when the executing HEVC encoder requires more or less computation from the underlying platform. Compared to state of the art, the CMS achieves 44% encoding time savings while incurring a minor 2.9% increase in the bitrate and 6% increase in BD-bitrate.
25

Dedicated and reconfigurable hardware accelerators for high efficiency video coding standard / Aceleradores dedicados e reconfiguráveis para o padrão high efficiency video coding (HEVC)

Diniz, Claudio Machado January 2015 (has links)
A demanda por vídeos de resolução ultra-alta (além de 1920x1080 pontos) levou à necessidade de desenvolvimento de padrões de codificação de vídeo novos e mais eficientes para prover alta eficiência de compressão. O novo padrão High Efficiency Video Coding (HEVC), publicado em 2013, atinge o dobro da eficiência de compressão (ou 50% de redução no tamanho do vídeo codificado) comparado com o padrão mais eficiente até então, e mais utilizado no mercado, o padrão H.264/AVC (Advanced Video Coding). O HEVC atinge este resultado ao custo de uma elevação da complexidade computacional das ferramentas inseridas no codificador e decodificador. O aumento do esforço computacional do padrão HEVC e as limitações de potência das tecnologias de fabricação em silício atuais tornam essencial o desenvolvimento de aceleradores de hardware para partes importantes da aplicação do HEVC. Aceleradores de hardware fornecem maior desempenho e eficiência energética para aplicações específicas que os processadores de propósito geral. Uma análise da aplicação do HEVC realizada neste trabalho identificou as partes mais importantes do HEVC do ponto de vista do esforço computacional, a saber, o Filtro de Interpolação de Ponto Fracionário, o Filtro de Deblocagem e o cálculo da Soma das Diferenças Absolutas. Uma análise de tempo de execução do Filtro de Interpolação indica um grande potencial de economia de potência/energia pela adaptação do acelerador de hardware à carga de trabalho variável. Esta tese introduz novas contribuições no tema de aceleradores dedicados e reconfiguráveis para o padrão HEVC. Aceleradores de hardware dedicados para o Filtro de Interpolação de Pixel Fracionário, para o Filtro de Deblocagem, e para o cálculo da Soma das Diferenças Absolutas, são propostos, projetados e avaliados nesta tese. A arquitetura de hardware proposta para o filtro de interpolação atinge taxa de processamento similar ao estado da arte, enquanto reduz a área do hardware para este bloco em 50%. A arquitetura de hardware proposta para o filtro de deblocagem também atinge taxa de processamento similar ao estado da arte com uma redução de 5X a 6X na contagem de gates e uma redução de 3X na dissipação de potência. A nova análise comparativa proposta para os elementos de processamento do cálculo da Soma das Diferenças Absolutas introduz diversas alternativas de projeto de arquitetura com diferentes resultados de área, desempenho e potência. A nova arquitetura reconfigurável para o filtro de interpolação do padrão HEVC fornece 57% de redução de área em tempo de projeto e adaptação da potência/energia em tempo-real a cada imagem processada, o que ainda não é suportado pelas arquiteturas do estado da arte para o filtro de interpolação. Adicionalmente, a tese propõe um novo esquema de alocação de aceleradores em tempo-real para arquiteturas reconfiguráveis baseadas em tiles de processamento e de grão-misto, o que reduz em 44% (23% em média) o “overhead” de comunicação comparado com uma estratégia first-fit com reuso de datapaths, para números diferentes de tiles e organizações internas de tile. Este esquema de alocação leva em conta a arquitetura interna para alocar aceleradores de uma maneira mais eficiente, evitando e minimizando a comunicação entre tiles. Os aceleradores e técnicas dedicadas e reconfiguráveis propostos nesta tese proporcionam implementações de codificadores de vídeo de nova geração, além do HEVC, com melhor área, desempenho e eficiência em potência. / The demand for ultra-high resolution video (beyond 1920x1080 pixels) led to the need of developing new and more efficient video coding standards to provide high compression efficiency. The High Efficiency Video Coding (HEVC) standard, published in 2013, reaches double compression efficiency (or 50% reduction in size of coded video) compared to the most efficient video coding standard at that time, and most used in the market, the H.264/AVC (Advanced Video Coding) standard. HEVC reaches this result at the cost of high computational effort of the tools included in the encoder and decoder. The increased computational effort of HEVC standard and the power limitations of current silicon fabrication technologies makes it essential to develop hardware accelerators for compute-intensive computational kernels of HEVC application. Hardware accelerators provide higher performance and energy efficiency than general purpose processors for specific applications. An HEVC application analysis conducted in this work identified the most compute-intensive kernels of HEVC, namely the Fractional-pixel Interpolation Filter, the Deblocking Filter and the Sum of Absolute Differences calculation. A run-time analysis on Interpolation Filter indicates a great potential of power/energy saving by adapting the hardware accelerator to the varying workload. This thesis introduces new contributions in the field of dedicated and reconfigurable hardware accelerators for HEVC standard. Dedicated hardware accelerators for the Fractional Pixel Interpolation Filter, the Deblocking Filter and the Sum of Absolute Differences calculation are herein proposed, designed and evaluated. The interpolation filter hardware architecture achieves throughput similar to the state of the art, while reducing hardware area by 50%. Our deblocking filter hardware architecture also achieves similar throughput compared to state of the art with a 5X to 6X reduction in gate count and 3X reduction in power dissipation. The thesis also does a new comparative analysis of Sum of Absolute Differences processing elements, in which various architecture design alternatives with different area, performance and power results were introduced. A novel reconfigurable interpolation filter hardware architecture for HEVC standard was developed, and it provides 57% design-time area reduction and run-time power/energy adaptation in a picture-by-picture basis, compared to the state-of-the-art. Additionally a run-time accelerator binding scheme is proposed for tile-based mixed-grained reconfigurable architectures, which reduces the communication overhead, compared to first-fit strategy with datapath reusing scheme, by up to 44% (23% on average) for different number of tiles and internal tile organizations. This run-time accelerator binding scheme is aware of the underlying architecture to bind datapaths in an efficient way, to avoid and minimize inter-tile communications. The new dedicated and reconfigurable hardware accelerators and techniques proposed in this thesis enable next-generation video coding standard implementations beyond HEVC with improved area, performance, and power efficiency.
26

Dedicated and reconfigurable hardware accelerators for high efficiency video coding standard / Aceleradores dedicados e reconfiguráveis para o padrão high efficiency video coding (HEVC)

Diniz, Claudio Machado January 2015 (has links)
A demanda por vídeos de resolução ultra-alta (além de 1920x1080 pontos) levou à necessidade de desenvolvimento de padrões de codificação de vídeo novos e mais eficientes para prover alta eficiência de compressão. O novo padrão High Efficiency Video Coding (HEVC), publicado em 2013, atinge o dobro da eficiência de compressão (ou 50% de redução no tamanho do vídeo codificado) comparado com o padrão mais eficiente até então, e mais utilizado no mercado, o padrão H.264/AVC (Advanced Video Coding). O HEVC atinge este resultado ao custo de uma elevação da complexidade computacional das ferramentas inseridas no codificador e decodificador. O aumento do esforço computacional do padrão HEVC e as limitações de potência das tecnologias de fabricação em silício atuais tornam essencial o desenvolvimento de aceleradores de hardware para partes importantes da aplicação do HEVC. Aceleradores de hardware fornecem maior desempenho e eficiência energética para aplicações específicas que os processadores de propósito geral. Uma análise da aplicação do HEVC realizada neste trabalho identificou as partes mais importantes do HEVC do ponto de vista do esforço computacional, a saber, o Filtro de Interpolação de Ponto Fracionário, o Filtro de Deblocagem e o cálculo da Soma das Diferenças Absolutas. Uma análise de tempo de execução do Filtro de Interpolação indica um grande potencial de economia de potência/energia pela adaptação do acelerador de hardware à carga de trabalho variável. Esta tese introduz novas contribuições no tema de aceleradores dedicados e reconfiguráveis para o padrão HEVC. Aceleradores de hardware dedicados para o Filtro de Interpolação de Pixel Fracionário, para o Filtro de Deblocagem, e para o cálculo da Soma das Diferenças Absolutas, são propostos, projetados e avaliados nesta tese. A arquitetura de hardware proposta para o filtro de interpolação atinge taxa de processamento similar ao estado da arte, enquanto reduz a área do hardware para este bloco em 50%. A arquitetura de hardware proposta para o filtro de deblocagem também atinge taxa de processamento similar ao estado da arte com uma redução de 5X a 6X na contagem de gates e uma redução de 3X na dissipação de potência. A nova análise comparativa proposta para os elementos de processamento do cálculo da Soma das Diferenças Absolutas introduz diversas alternativas de projeto de arquitetura com diferentes resultados de área, desempenho e potência. A nova arquitetura reconfigurável para o filtro de interpolação do padrão HEVC fornece 57% de redução de área em tempo de projeto e adaptação da potência/energia em tempo-real a cada imagem processada, o que ainda não é suportado pelas arquiteturas do estado da arte para o filtro de interpolação. Adicionalmente, a tese propõe um novo esquema de alocação de aceleradores em tempo-real para arquiteturas reconfiguráveis baseadas em tiles de processamento e de grão-misto, o que reduz em 44% (23% em média) o “overhead” de comunicação comparado com uma estratégia first-fit com reuso de datapaths, para números diferentes de tiles e organizações internas de tile. Este esquema de alocação leva em conta a arquitetura interna para alocar aceleradores de uma maneira mais eficiente, evitando e minimizando a comunicação entre tiles. Os aceleradores e técnicas dedicadas e reconfiguráveis propostos nesta tese proporcionam implementações de codificadores de vídeo de nova geração, além do HEVC, com melhor área, desempenho e eficiência em potência. / The demand for ultra-high resolution video (beyond 1920x1080 pixels) led to the need of developing new and more efficient video coding standards to provide high compression efficiency. The High Efficiency Video Coding (HEVC) standard, published in 2013, reaches double compression efficiency (or 50% reduction in size of coded video) compared to the most efficient video coding standard at that time, and most used in the market, the H.264/AVC (Advanced Video Coding) standard. HEVC reaches this result at the cost of high computational effort of the tools included in the encoder and decoder. The increased computational effort of HEVC standard and the power limitations of current silicon fabrication technologies makes it essential to develop hardware accelerators for compute-intensive computational kernels of HEVC application. Hardware accelerators provide higher performance and energy efficiency than general purpose processors for specific applications. An HEVC application analysis conducted in this work identified the most compute-intensive kernels of HEVC, namely the Fractional-pixel Interpolation Filter, the Deblocking Filter and the Sum of Absolute Differences calculation. A run-time analysis on Interpolation Filter indicates a great potential of power/energy saving by adapting the hardware accelerator to the varying workload. This thesis introduces new contributions in the field of dedicated and reconfigurable hardware accelerators for HEVC standard. Dedicated hardware accelerators for the Fractional Pixel Interpolation Filter, the Deblocking Filter and the Sum of Absolute Differences calculation are herein proposed, designed and evaluated. The interpolation filter hardware architecture achieves throughput similar to the state of the art, while reducing hardware area by 50%. Our deblocking filter hardware architecture also achieves similar throughput compared to state of the art with a 5X to 6X reduction in gate count and 3X reduction in power dissipation. The thesis also does a new comparative analysis of Sum of Absolute Differences processing elements, in which various architecture design alternatives with different area, performance and power results were introduced. A novel reconfigurable interpolation filter hardware architecture for HEVC standard was developed, and it provides 57% design-time area reduction and run-time power/energy adaptation in a picture-by-picture basis, compared to the state-of-the-art. Additionally a run-time accelerator binding scheme is proposed for tile-based mixed-grained reconfigurable architectures, which reduces the communication overhead, compared to first-fit strategy with datapath reusing scheme, by up to 44% (23% on average) for different number of tiles and internal tile organizations. This run-time accelerator binding scheme is aware of the underlying architecture to bind datapaths in an efficient way, to avoid and minimize inter-tile communications. The new dedicated and reconfigurable hardware accelerators and techniques proposed in this thesis enable next-generation video coding standard implementations beyond HEVC with improved area, performance, and power efficiency.
27

Computational effort analysis and control in High Efficiency Video Coding

Silva, Mateus Grellert da January 2014 (has links)
Codificadores HEVC impõem diversos desafios em aplicações embarcadas com restrições computacionais, especialmente quando há restrições de processamento em tempo real. Para tornar a codificação de vídeos HEVC factível nessas situações, é proposto neste trabalho um Sistema de Controle de Complexidade (SCC) que se adapta dinamicamente a capacidades computacionais varáveis. Considera-se que o codificador faz parte de um sistema maior, o qual informa suas restrições como disponibilidade da CPU e processamento alvo para o SCC. Para desenvolver um sistema eficiente, uma extensiva análise de complexidade dos principais parâmetros de codificação é realizada. Nessa análise, foi definida uma métrica livre de particularidades da plataforma de simulação, como hierarquia de memória e acesso concorrente à unidade de processamento. Essa métrica foi chamada de Complexidade Aritmética e pode ser facilmente adaptada para diversas plataformas. Os resultados mostram que o SCC proposto atinge ganhos médios de 40% em complexidade com penalidade mínima em eficiência de compressão e qualidade. As análises de adaptabilidade e controlabilidade mostraram que o SCC rapidamente se adapta a diferentes restrições, por exemplo, quando a disponibilidade de recursos computacionais varia dinamicamente enquanto um vídeo é codificado. Comparado com o estado da arte, o SCC atinge uma redução de 44% no tempo de codificação com penalidade de 2.9% na taxa de compressão e acréscimo de 6% em BD-bitrate. / HEVC encoders impose several challenges in resource-/computationally-constrained embedded applications, especially under real-time throughput constraints. To make HEVC encoding feasible in such scenarios, an adaptive Computation Management Scheme (CMS) that dynamically adapts to varying compute capabilities is proposed in this work. It is assumed that the encoder is part of a larger system, which informs to the CMS its restrictions and requirements, like CPU availability and target frame rate. To effectively develop and apply such a scheme, an extensive computational effort analysis of key encoding parameters of the HEVC is carried out. For this analysis, a platform-orthogonal metric called “Arithmetic Complexity” was developed, which can be widely adopted for various computing platforms. The achieved results illustrate that the proposed CMS provides 40% cycle savings on average at the cost of small RD penalties. The adaptability and controllability analyses show that the CMS quickly adapts to different constrained scenarios, e.g., when the executing HEVC encoder requires more or less computation from the underlying platform. Compared to state of the art, the CMS achieves 44% encoding time savings while incurring a minor 2.9% increase in the bitrate and 6% increase in BD-bitrate.
28

Compression efficiency of different picture coding structures in High Efficiency Video Coding (HEVC)

Bartelmess, Johan January 2016 (has links)
Video content is expected to account for 80 percent of all Internet traffic in 2019. There is therefore an increasing need for better video compression methods, to decrease the use of internet bandwidth. One way of achieving high video compression is to predict pixel values for a video frame based on prior and succeeding pictures in the video. The H.265 video compression standard supports this method, and in particular makes it possible to specify in which order pictures are coded, and which pictures are predicted from which. The coding order is specified for Groups Of Pictures (GOP), where a number of pictures are grouped together and predicted from each other in a specified order. This thesis evaluates how the GOPs should be structured, for instance in terms of sizing, to maximize the compression efficiency relative to the video quality. It also investigates the effect of multiple reference pictures, a functionality that enables the picture that renders the best prediction to be selected. The results show that the largest tested GOP size of 32 pictures is preferable for all tested video characteristics, and that support for multiple reference pictures renders a similar increase in compression efficiency for all GOP sizes.
29

Backward compatible approaches for the compression of high dynamic range videos / Approches rétro-compatibles pour la compression de vidéos à grande gamme dynamique

Le Pendu, Mikaël 17 March 2016 (has links)
Les technologies d'écran ont connu récemment une évolution rapide. De la télévision 3D à l'Ultra Haute Définition, la tendance est maintenant aux écrans HDR (pour ''High Dynamic Range'') permettant de reproduire une gamme de luminance bien plus élevée que les écrans classiques. L'émergence de cette technologie implique de nouveaux travaux de standardisation dans le domaine de la compression vidéo. Une question essentielle pour la distribution à grande échelle de contenu HDR est celle de la rétro-compatibilité. Tandis que la future génération d'écrans de télévision sera adaptée à ce nouveau format, il est nécessaire de permettre aux équipements plus anciens de décoder et afficher une version du même contenu dont la dynamique a été préalablement réduite par un procédé appelé ''tone mapping''. Cette thèse vise à explorer les schémas de compression HDR rétro-compatibles. Dans une première approche, un algorithme de tone mapping spécifié par l'encodeur est appliqué à l'image HDR. L'image générée, alors appelée LDR (pour ''Low Dynamic Range''), peut être encodée et décodée dans un format classique. L'encodeur transmet par ailleurs une quantité réduite d'information permettant à un décodeur HDR d'inverser l'opération de tone mapping et de reconstruire une version HDR. L'étude de ces schémas est axée sur la définition de méthodes de tone mapping optimisées pour les performances de compression. La suite de la thèse se concentre sur l'approche scalable dans laquelle les deux versions sont fournies à l'encodeur sans connaissance à priori sur l'opérateur de tone mapping utilisé. Le producteur garde donc le contrôle sur la création du contenu LDR. Cette version LDR est d'abord compressée comme une première couche. L'image reconstruite est utilisée par le codeur scalable pour compresser plus efficacement la couche HDR grâce à un mécanisme de prédiction inter-couches. Notre approche locale et non linéaire nous permet d'améliorer les performances de codage par rapport aux méthodes scalables existantes, en particulier dans le cas où un tone mapping complexe est utilisé pour générer la version LDR. / In recent years, the display technologies have been rapidly evolving. From 3D television to Ultra High Definition, the trend is now towards High Dynamic Range (HDR) displays that can reproduce a luminance range far beyond the capabilities of conventional displays. The emergence of this technology involves new standardization effort in the field of video compression. In terms of large scale content distribution, the question of backward compatibility is critical. While the future generation of television displays will be adapted to this new format, it is necessary to enable the older equipment to decode and display a version of the same content whose dynamic range has been previously reduced by a process called “tone mapping”. This thesis aims at exploring the backward compatible HDR compression schemes. In a first approach, a tone mapping operator specified by the encoder is applied to the HDR image. The resulting image, called Low Dynamic Range (LDR), can then be encoded and decoded in a conventional format. The encoder additionally transmits a small amount of information enabling a HDR capable decoder to inverse the tone mapping operator and retrieve the HDR version. The study of these schemes is directed towards the definition of tone mapping operators optimized for the compression performance. We then focus on scalable approaches, where both versions are given to the encoder without prior knowledge on the tone mapping operator used. The producer thus keeps full control on the LDR content creation process. This LDR version is compressed as a first layer. The reconstructed image is used by the scalable encoder to compress the HDR layer efficiently by performing inter-layer predictions. Thanks to a local and non-linear approach, the proposed schemes improve the coding performance compared to the existing scalable methods, especially in the case where a complex tone mapping is used for generating the LDR version.
30

Computational effort analysis and control in High Efficiency Video Coding

Silva, Mateus Grellert da January 2014 (has links)
Codificadores HEVC impõem diversos desafios em aplicações embarcadas com restrições computacionais, especialmente quando há restrições de processamento em tempo real. Para tornar a codificação de vídeos HEVC factível nessas situações, é proposto neste trabalho um Sistema de Controle de Complexidade (SCC) que se adapta dinamicamente a capacidades computacionais varáveis. Considera-se que o codificador faz parte de um sistema maior, o qual informa suas restrições como disponibilidade da CPU e processamento alvo para o SCC. Para desenvolver um sistema eficiente, uma extensiva análise de complexidade dos principais parâmetros de codificação é realizada. Nessa análise, foi definida uma métrica livre de particularidades da plataforma de simulação, como hierarquia de memória e acesso concorrente à unidade de processamento. Essa métrica foi chamada de Complexidade Aritmética e pode ser facilmente adaptada para diversas plataformas. Os resultados mostram que o SCC proposto atinge ganhos médios de 40% em complexidade com penalidade mínima em eficiência de compressão e qualidade. As análises de adaptabilidade e controlabilidade mostraram que o SCC rapidamente se adapta a diferentes restrições, por exemplo, quando a disponibilidade de recursos computacionais varia dinamicamente enquanto um vídeo é codificado. Comparado com o estado da arte, o SCC atinge uma redução de 44% no tempo de codificação com penalidade de 2.9% na taxa de compressão e acréscimo de 6% em BD-bitrate. / HEVC encoders impose several challenges in resource-/computationally-constrained embedded applications, especially under real-time throughput constraints. To make HEVC encoding feasible in such scenarios, an adaptive Computation Management Scheme (CMS) that dynamically adapts to varying compute capabilities is proposed in this work. It is assumed that the encoder is part of a larger system, which informs to the CMS its restrictions and requirements, like CPU availability and target frame rate. To effectively develop and apply such a scheme, an extensive computational effort analysis of key encoding parameters of the HEVC is carried out. For this analysis, a platform-orthogonal metric called “Arithmetic Complexity” was developed, which can be widely adopted for various computing platforms. The achieved results illustrate that the proposed CMS provides 40% cycle savings on average at the cost of small RD penalties. The adaptability and controllability analyses show that the CMS quickly adapts to different constrained scenarios, e.g., when the executing HEVC encoder requires more or less computation from the underlying platform. Compared to state of the art, the CMS achieves 44% encoding time savings while incurring a minor 2.9% increase in the bitrate and 6% increase in BD-bitrate.

Page generated in 0.0258 seconds