1 |
Regressão logística – uma estimativa Bayesiana aplicada na identificação de fatores de risco para HIV, em doadores de sangueQUEIROZ, Niedja Maristone Oliveira Barreto 26 March 2004 (has links)
Submitted by (ana.araujo@ufrpe.br) on 2016-08-09T12:57:36Z
No. of bitstreams: 1
Niedja Maristone Oliveira Barreto Queiroz.pdf: 2909360 bytes, checksum: 109caf21db04442310458a38ed638100 (MD5) / Made available in DSpace on 2016-08-09T12:57:36Z (GMT). No. of bitstreams: 1
Niedja Maristone Oliveira Barreto Queiroz.pdf: 2909360 bytes, checksum: 109caf21db04442310458a38ed638100 (MD5)
Previous issue date: 2004-03-26 / Logistic regression has application in several fields as epidemiology, medical research, banks, market research and social research. One of its advantages is that the interpretation of the measure is possible through the " Odds Ratios” (OR), that are functions of the parameters of the model. In this study the binary regression model was used, with the objective of estimating the relationship between two variables, taking into account the presence of other factors. For his purpose a Bayesian approach was used to estimate those risk measures, and these results were compared with the corresponding classical results obtained by application of a stepwise backward process, using the maximum likelihood as criterion for exclusion of the variable of the model, and the Wald test as analysis of each parameter of the final model, both at the level of significance of 0,05. An application was performed using real data from a transverse study of 106.203 blood donor candidates, found apt by the clinical screening process performed at the blood bank Recife of the HEMOPE foundation. Measures of HIV infection association “OR” were estimated in relation with certain socio-demographic conditions, sorological markers for other Sexually Transmissible Diseases as well as the donation type. For the classical analysis thestatistical package SPSS version 10 was used, and for the bayesian analysis the Winbugs 14. The results indicated that OR obtained using the two methods are rather similar, in spite of the fact that the classical approach used Maximum likelihood and the bayesian approach used the Markov Chain Monte Carlo(MCMC), which are quite different methods. It was concluded, that the factors independently associated to the HIV infection risk among donors of blood in the observed period, for the bayesian estimate, were: age 18 to 28 years (2,45) and 29 to 39 years (2,79); illiteracy (8,17), primary school (3,31) and secundary school (3,29); positive Anti-Hbc (1,95), positive syphilis (3,14), residence in the Metropolitan Area of Recife (2,41) and type of voluntary donation (11,94). / Regressão logística tem aplicação em diversos campos como epidemiologia, pesquisa médica, bancos, pesquisa de mercado e pesquisa social. Uma de suas vantagens é que a interpretação da medida é possível através das “Odds Ratios” (OR), que são funções dos parâmetros do modelo. Neste estudo foi usado o modelo de regressão binária, com o objetivo de estimar a relação entre duas variáveis tendo em conta a presença de outros fatores. Utilizou-se para isso uma abordagem bayesiana para estimar essas medidas de risco, fazendo uma comparação com os resultados da abordagem clássica proveniente de um processo stepwise backward, utilizando o critério da razão de verossimilhança como exclusão da variável do modelo e o teste de Wald como análise de cada parâmetro do modelo final, ambos no nível de significância de 0,05. Realizou-se uma aplicação com dados reais proveniente de um estudo transversal de 106.203 doadores de sangue de 1ª doação aptos na triagem clínica no Hemocentro Recife da Fundação HEMOPE. Estimou-se medidas de associação “OR”, da infecção por HIV, com relação a algumas condições sócio-demográficas, marcadores sorológicos para outras Doenças Sexualmente Transmissíveis (DST) e tipo de doação. Para as análises no método clássico foi utilizado o pacote estatístico SPSS versão 10 e no método bayesiano o Winbugs 14. Os resultados indicaram que as OR estimadas, utilizando os dois métodos, foram bastante próximas, apesar do clássico utilizar o método de estimação por Máxima Verossimilhança, e o bayesiano utilizar os métodos de Monte Carlo Cadeia de Markov (MCMC), que são métodos diferentes. Concluiu-se, que os fatores independentemente associados ao risco de infecção por HIV entre doadores de sangue no período foram, pela estimativa bayesiana: idade 18 a 28 anos (2,45) e 29 a 39 anos (2,79); escolaridade: analfabeto (8,17), ensino fundamental (3,31) e médio (3,29); Anti-Hbc positivo (1,95); sífilis positivo (3,14); residir na Região Metropolitana do Recife (RMR) (2,41) e tipo de doação voluntária (11,94).
|
Page generated in 0.1025 seconds