1 |
Data Distribution Management In Large-scale Distributed EnvironmentsGu, Yunfeng 15 February 2012 (has links)
Data Distribution Management (DDM) deals with two basic problems: how to distribute data generated at the application layer among underlying nodes in a distributed system and how to retrieve data back whenever it is necessary. This thesis explores DDM in two different network environments: peer-to-peer (P2P) overlay networks and cluster-based network environments. DDM in P2P overlay networks is considered a more complete concept of building and maintaining a P2P overlay architecture than a simple data fetching scheme, and is closely related to the more commonly known associative searching or queries. DDM in the cluster-based network environment is one of the important services provided by the simulation middle-ware to support real-time distributed interactive simulations. The only common feature shared by DDM in both environments is that they are all built to provide data indexing service. Because of these fundamental differences, we have designed and developed a novel distributed data structure, Hierarchically Distributed Tree (HD Tree), to support range queries in P2P overlay networks. All the relevant problems of a distributed data structure, including the scalability, self-organizing, fault-tolerance, and load balancing have been studied. Both theoretical analysis and experimental results show that the HD Tree is able to give a complete view of system states when processing multi-dimensional range queries at different levels of selectivity and in various error-prone routing environments. On the other hand, a novel DDM scheme, Adaptive Grid-based DDM scheme, is proposed to improve the DDM performance in the cluster-based network environment. This new DDM scheme evaluates the input size of a simulation based on probability models. The optimum DDM performance is best approached by adapting the simulation running in a mode that is most appropriate to the size of the simulation.
|
2 |
Data Distribution Management In Large-scale Distributed EnvironmentsGu, Yunfeng 15 February 2012 (has links)
Data Distribution Management (DDM) deals with two basic problems: how to distribute data generated at the application layer among underlying nodes in a distributed system and how to retrieve data back whenever it is necessary. This thesis explores DDM in two different network environments: peer-to-peer (P2P) overlay networks and cluster-based network environments. DDM in P2P overlay networks is considered a more complete concept of building and maintaining a P2P overlay architecture than a simple data fetching scheme, and is closely related to the more commonly known associative searching or queries. DDM in the cluster-based network environment is one of the important services provided by the simulation middle-ware to support real-time distributed interactive simulations. The only common feature shared by DDM in both environments is that they are all built to provide data indexing service. Because of these fundamental differences, we have designed and developed a novel distributed data structure, Hierarchically Distributed Tree (HD Tree), to support range queries in P2P overlay networks. All the relevant problems of a distributed data structure, including the scalability, self-organizing, fault-tolerance, and load balancing have been studied. Both theoretical analysis and experimental results show that the HD Tree is able to give a complete view of system states when processing multi-dimensional range queries at different levels of selectivity and in various error-prone routing environments. On the other hand, a novel DDM scheme, Adaptive Grid-based DDM scheme, is proposed to improve the DDM performance in the cluster-based network environment. This new DDM scheme evaluates the input size of a simulation based on probability models. The optimum DDM performance is best approached by adapting the simulation running in a mode that is most appropriate to the size of the simulation.
|
3 |
Data Distribution Management In Large-scale Distributed EnvironmentsGu, Yunfeng 15 February 2012 (has links)
Data Distribution Management (DDM) deals with two basic problems: how to distribute data generated at the application layer among underlying nodes in a distributed system and how to retrieve data back whenever it is necessary. This thesis explores DDM in two different network environments: peer-to-peer (P2P) overlay networks and cluster-based network environments. DDM in P2P overlay networks is considered a more complete concept of building and maintaining a P2P overlay architecture than a simple data fetching scheme, and is closely related to the more commonly known associative searching or queries. DDM in the cluster-based network environment is one of the important services provided by the simulation middle-ware to support real-time distributed interactive simulations. The only common feature shared by DDM in both environments is that they are all built to provide data indexing service. Because of these fundamental differences, we have designed and developed a novel distributed data structure, Hierarchically Distributed Tree (HD Tree), to support range queries in P2P overlay networks. All the relevant problems of a distributed data structure, including the scalability, self-organizing, fault-tolerance, and load balancing have been studied. Both theoretical analysis and experimental results show that the HD Tree is able to give a complete view of system states when processing multi-dimensional range queries at different levels of selectivity and in various error-prone routing environments. On the other hand, a novel DDM scheme, Adaptive Grid-based DDM scheme, is proposed to improve the DDM performance in the cluster-based network environment. This new DDM scheme evaluates the input size of a simulation based on probability models. The optimum DDM performance is best approached by adapting the simulation running in a mode that is most appropriate to the size of the simulation.
|
4 |
Data Distribution Management In Large-scale Distributed EnvironmentsGu, Yunfeng January 2012 (has links)
Data Distribution Management (DDM) deals with two basic problems: how to distribute data generated at the application layer among underlying nodes in a distributed system and how to retrieve data back whenever it is necessary. This thesis explores DDM in two different network environments: peer-to-peer (P2P) overlay networks and cluster-based network environments. DDM in P2P overlay networks is considered a more complete concept of building and maintaining a P2P overlay architecture than a simple data fetching scheme, and is closely related to the more commonly known associative searching or queries. DDM in the cluster-based network environment is one of the important services provided by the simulation middle-ware to support real-time distributed interactive simulations. The only common feature shared by DDM in both environments is that they are all built to provide data indexing service. Because of these fundamental differences, we have designed and developed a novel distributed data structure, Hierarchically Distributed Tree (HD Tree), to support range queries in P2P overlay networks. All the relevant problems of a distributed data structure, including the scalability, self-organizing, fault-tolerance, and load balancing have been studied. Both theoretical analysis and experimental results show that the HD Tree is able to give a complete view of system states when processing multi-dimensional range queries at different levels of selectivity and in various error-prone routing environments. On the other hand, a novel DDM scheme, Adaptive Grid-based DDM scheme, is proposed to improve the DDM performance in the cluster-based network environment. This new DDM scheme evaluates the input size of a simulation based on probability models. The optimum DDM performance is best approached by adapting the simulation running in a mode that is most appropriate to the size of the simulation.
|
5 |
Modeling, Design And Evaluation Of Networking Systems And Protocols Through SimulationLacks, Daniel Jonathan 01 January 2007 (has links)
Computer modeling and simulation is a practical way to design and test a system without actually having to build it. Simulation has many benefits which apply to many different domains: it reduces costs creating different prototypes for mechanical engineers, increases the safety of chemical engineers exposed to dangerous chemicals, speeds up the time to model physical reactions, and trains soldiers to prepare for battle. The motivation behind this work is to build a common software framework that can be used to create new networking simulators on top of an HLA-based federation for distributed simulation. The goals are to model and simulate networking architectures and protocols by developing a common underlying simulation infrastructure and to reduce the time a developer has to learn the semantics of message passing and time management to free more time for experimentation and data collection and reporting. This is accomplished by evolving the simulation engine through three different applications that model three different types of network protocols. Computer networking is a good candidate for simulation because of the Internet's rapid growth that has spawned off the need for new protocols and algorithms and the desire for a common infrastructure to model these protocols and algorithms. One simulation, the 3DInterconnect simulator, simulates data transmitting through a hardware k-array n-cube network interconnect. Performance results show that k-array n-cube topologies can sustain higher traffic load than the currently used interconnects. The second simulator, Cluster Leader Logic Algorithm Simulator, simulates an ad-hoc wireless routing protocol that uses a data distribution methodology based on the GPS-QHRA routing protocol. CLL algorithm can realize a maximum of 45% power savings and maximum 25% reduced queuing delay compared to GPS-QHRA. The third simulator simulates a grid resource discovery protocol for helping Virtual Organizations to find resource on a grid network to compute or store data on. Results show that worst-case 99.43% of the discovery messages are able to find a resource provider to use for computation. The simulation engine was then built to perform basic HLA operations. Results show successful HLA functions including creating, joining, and resigning from a federation, time management, and event publication and subscription.
|
Page generated in 0.0286 seconds