31 |
Comparison of several protocols for the increase in homologous recombination in normal porcine fetal fibroblasts and the application to an actual locusZaunbrecher, Gretchen Marie 30 September 2004 (has links)
Together with the advancements in animal cloning, the ability to efficiently target specific genes in somatic cells would greatly enhance several areas of research. While it has been possible for quite some time to target specific genes in the germ cells of mice, the advancements in somatic cell gene targeting has been slowed for two main reasons. First, the finite lifespan of somatic cells, due mainly to the inability of the somatic cells to regenerate or maintain their telomeres, poses a major problem given the lengthy selection process needed to identify a targeting event. The second problem is the overall inefficiency of homologous recombination. A double strand break or introduction of foreign DNA into a cell can be processed either through the homologous recombination or non-homologous end joining pathways. Of these two, non-homologous end joining is dominant in somatic cells. A two plasmid recombination system was used to study the effects of the manipulation of several non-homologous end joining and homologous recombination pathway molecules on the rates of homologous recombination in porcine fetal fibroblasts. In addition, the effect of telomerase expression, cell synchrony, and DNA nuclear delivery was examined. Results indicate a strong positive relationship between inactivation of p53, cell synchronization, and efficient DNA nuclear delivery in enhancing the rate of homologous recombination. These findings were then applied to an actual locus in the pig, the α1,3 galactosyltransferase gene. Results from these transfections are compared to published accounts of successful targeting at this locus and possibilities for the differences found are discussed.
|
32 |
The Molecular Structures of Recombination Intermediates in YeastMitchel, Katrina January 2012 (has links)
<p>The genetic information necessary for the survival and propagation of a species is contained within a physical structure, DNA. However, this molecule is sensitive to damage arising from both exogenous and endogenous sources. DNA damage can prevent metabolic processes such as replication and transcription; thus, systems to bypass or repair DNA lesions are essential. One type of lesion in particular - the double strand break (DSB) - is extremely dangerous as inappropriate repair of DSBs can lead to deletions, mutations and rearrangements. Homologous recombination (HR) uses a template with sequence homology to the region near the DSB to restore the damaged molecule. However, this high-fidelity pathway can contribute to genome instability when recombination occurs between diverged substrates. To further our understanding of the regulation of HR during vegetative growth, we have used the budding yeast Saccharomyces cerevisiae as a model system and a plasmid-based assay to model repair of a DSB. In the first part of this work, the molecular structures of noncrossover (NCO) and crossover (CO) products of recombination were examined. While the majority of NCOs had regions of heteroduplex DNA (hDNA) on one side of the gap in the repaired allele and no change to the donor allele, most COs had two tracts of hDNA. They were present on opposite sides of the gap, one in each allele. Our results suggest that the majority of NCOs are generated through synthesis-dependent strand annealing (SDSA), and COs are the result of constrained cleavage of a Holliday junction (HJ) intermediate. To clarify the mechanisms regulating NCO production, the effects of three DNA helicases - Mph1, Sgs1 and Srs2 - on the structures of NCO events were examined. All three helicases promote NCO formation by SDSA, but Sgs1 and Srs2 also assist in NCO formation arising from an HJ-containing intermediate, consistent with HJ-dissolution. To study how CO products are generated, we have investigated the contribution of the following candidate HJ resolvases to the structures of CO events: Mus81, Yen1 and Rad1. The results suggest that Rad1 is important to normal CO formation in this assay, but Mus81 and Yen1 are largely dispensable. Together, this work advances our knowledge of how the NCO versus CO outcome is determined during HR, expanding our understanding of how mitotic recombination is regulated.</p> / Dissertation
|
33 |
Functions Of Nucleosomes And Other Regulatory Factor(S) In Homologous Recombination Promoted By RecA ProteinRamdas, Jyoti 04 1900 (has links)
Homologous genetic recombination occurs during the life cycle of virtually every organism Genetic studies especially in prokaryotes and fungi have defined the rules of recombination, led to the characterization of alternate pathways and to the development of molecular models The biochemistry of homologous genetic recombination has advanced most productively in bacteria and fungi due to the extensive genetic understanding of these organisms The identification of mutants defective in homologous recombination, purification and characterization of the gene products that participate in recombination has brought the ultimate goal of reconstituting a cell-k free system for Eschenchia coli, at least with naked DNA substrates, closer to reality.
|
34 |
Regulation and Targeting of the FANCD2 Activation in DNA RepairCaceres, Valentina Celeste 01 January 2015 (has links)
Fanconi anemia (FA) is a genome instability syndrome that is clinically manifested by bone marrow failure, congenital defects, and elevated cancer susceptibility. The FA pathway is known to regulate the repair of DNA interstrand crosslinks in part through DNA homologous recombination (HR) repair. Up to today 16 FA proteins have been discovered that may participate in the common pathway. Cells that have mutations in the FA genes are hypersensitive to DNA damaging agents and display chromosome instability. A key regulatory event in the FA pathway is monoubiquitination of FANCD2-FANCI heterodimer that is mediated by a multi-component E3 ubiquitin ligase complex called FA core complex. Current model suggests that once the FANCD2-FANCI heterodimer is monoubiquitinated it relocates to chromatin where it interacts with other key repair proteins to facilitate DNA repair. More than 90% of the FA cases are presumed to be associated with defects in the monoubiquitination reaction, suggesting the significance of the modification in the pathogenesis of the disease. Despite the significance, the molecular interplay between the FA core complex and the FANCD2-FANCI heterodimer remains enigmatic. We are interested in the assembly mechanism of the various FA subcomplexes into the core complex, and we are actively investigating how the FANCD2-FANCI heterodimer is recruited to these putative subcomplexes. As the FA pathway is a crucial determinant for cellular resistance to DNA damaging agents, there have been hypotheses that disruption of this pathway may be beneficial in enhancing chemosensitivity of certain cancer cells. In collaboration with Dr. Cai’s chemistry lab, we will develop a screen platform to identify a small molecules to interrupt the monoubiquitination reaction. Completion of these studies will enhance the much-needed knowledge of the key enzymatic reaction in the pathway, and perhaps the information can be used for development of novel chemotherapeutic strategies.
|
35 |
Cooperative nuclease activity of the Mre11/Rad50/Xrs2 complex and Sae2 during DNA double-strand break repairLengsfeld, Bettina Marie 12 March 2014 (has links)
DNA double-strand breaks (DSBs) are lethal in eukaryotic cells if left unrepaired. In Saccharomyces cerevisiae the Mre11/Rad50/Xrs2 (MRX) complex is required for repair of DSBs through homologous recombination and nonhomologous end joining. Although Mre11 complexes exhibit 3'[rightwards arrow]5' exonuclease activity and endonuclease activity on DNA hairpin and single-stranded DNA overhang substrates in vitro, the role of the MRX complex in homologous recombination in vivo is not well understood. It has been shown to be specifically required for the processing of protein-conjugated DNA ends at DSBs during meiosis and hairpin-capped DSBs in mitotic cells and has been suggested that the Mre11 nuclease functions to remove damaged DNA ends. Recently, the Sae2 protein has been demonstrated to be involved in hairpin-capped DSBs and DNA end processing along with MRX in vivo. However, the Sae2 protein has no known homologs outside of fungi and no obvious motifs to suggest the function(s) of the Sae2 protein. We have purified recombinant Sae2 and MRX and report that the Sae2 protein itself is a single-stranded DNA endonuclease. The Sae2 protein stimulates the 3[rightwards arrow]5' exonuclease activity of the MRX complex. Also, the MRX complex can stimulate Sae2 nuclease activity to cleave ssDNA adjacent to DNA hairpin structures. The Sae2 protein also binds independently to double-stranded DNA and forms higher order protein-DNA complexes with MRX. These results provide biochemical evidence for functional cooperatively between MRX and Sae2 on DSBs and hairpin-capped DNA ends. / text
|
36 |
Comparison of several protocols for the increase in homologous recombination in normal porcine fetal fibroblasts and the application to an actual locusZaunbrecher, Gretchen Marie 30 September 2004 (has links)
Together with the advancements in animal cloning, the ability to efficiently target specific genes in somatic cells would greatly enhance several areas of research. While it has been possible for quite some time to target specific genes in the germ cells of mice, the advancements in somatic cell gene targeting has been slowed for two main reasons. First, the finite lifespan of somatic cells, due mainly to the inability of the somatic cells to regenerate or maintain their telomeres, poses a major problem given the lengthy selection process needed to identify a targeting event. The second problem is the overall inefficiency of homologous recombination. A double strand break or introduction of foreign DNA into a cell can be processed either through the homologous recombination or non-homologous end joining pathways. Of these two, non-homologous end joining is dominant in somatic cells. A two plasmid recombination system was used to study the effects of the manipulation of several non-homologous end joining and homologous recombination pathway molecules on the rates of homologous recombination in porcine fetal fibroblasts. In addition, the effect of telomerase expression, cell synchrony, and DNA nuclear delivery was examined. Results indicate a strong positive relationship between inactivation of p53, cell synchronization, and efficient DNA nuclear delivery in enhancing the rate of homologous recombination. These findings were then applied to an actual locus in the pig, the α1,3 galactosyltransferase gene. Results from these transfections are compared to published accounts of successful targeting at this locus and possibilities for the differences found are discussed.
|
37 |
Investigating the Role of Rad51 in Mammalian Ectopic Homologous RecombinationKnapp, Jennifer 12 July 2013 (has links)
DNA damage occurs through endogenous and exogenous sources, and can lead to stalled replication forks, genetic disorders, cancer, and cell death. Homologous recombination (HR) is a relatively fast and error-free repair pathway for damaged DNA, which can occur through a gene conversion event or through a crossing-over event with the exchange of genetic material. Homologous recombination occurs most frequently in the G2 phase of the cell cycle and utilizes the sister chromatid as the repair template. When the sister chromatid is unavailable, the homologous chromosome or a homologous sequence in an ectopic location can be used to repair the lesion; the latter of which is referred to as ectopic homologous recombination (EHR). Rad51 is a key protein involved in HR, and to test its role in EHR, variant Rad51 proteins were expressed in murine hybridoma cells. These Rad51 variants were assayed for their effects on EHR. Excess wild-type Rad51 as well as a deficiency of wild-type Rad51 decreased EHR from the background level found in these cell lines. Thus, Rad51 is necessary for EHR, but there may be an optimal amount of Rad51 required for efficient EHR. Expression of the Rad51 catalytic mutants Rad51K133A and Rad51K133R was found to have an inhibitory effect on EHR, as expected based on the loss of ATP binding and ATP hydrolysis, respectively, in these variants. Excess wild-type Rad51 was verified in this study to increase HR via a gene targeting assay. MMC treatment, but not ionizing radiation, leads to an increase in EHR in the presence of excess wild-type Rad51. Thus, endogenous levels of Rad51 are sufficient to maintain EHR, but in the presence of excess wild-type Rad51, the level of EHR can increase in response to certain DNA damaging agents and in response to gene targeting.
|
38 |
STRUCTURAL INSTABILITY OF HUMAN RIBOSOMAL RNA GENE CLUSTERSStults, Dawn Michelle 01 January 2010 (has links)
The human ribosomal RNA genes are critically important for cell metabolism and viability. They code for the catalytic RNAs which, encased in a housing of more than 80 ribosomal proteins, link together amino acids by peptide bonds to generate all cellular proteins. Because the RNAs are not repeatedly translated, as is the case with messenger RNAs, multiple copies are required. The genes which code for the human ribosomal RNAs (rRNAs) are arranged as clusters of tandemly repeated sequences. Three of four catalytic RNAs are spliced from a single transcript. The genes are located on the short arms of the five acrocentric chromosomes (13, 14, 15, 21, and 22). The genes for the fourth rRNA are on chromosome 1q42, also arranged as a cluster of tandem repeats. The repeats are extremely similar in sequence, which makes them ideal for misalignment, non‐allelic homologous recombination (NAHR), and genomic destabilization during meiosis , replication, and damage repair. In this dissertation, I have used pulse‐field gel electrophoresis and in‐blot Southern hybridization to explore the physical structure of the human rRNA genes and determine their stability and heritability in normal, healthy individuals. I have also compared their structure in solid tumors compared to normal, healthy tissue from the same patient to determine whether dysregulated homologous recombination is an important means of genomic destabilization in cancer progression. Finally, I used the NCI‐60 panel of human cancer cell lines to compare the results from the pulsed‐field analysis, now called the gene cluster instability (GCI) assay, to two other indicators of homologous‐recombination-mediated genomic instability: sister chromatid exchange, and 5‐hydroxymethyl‐2’deoxyuridine sensitivity.
|
39 |
LOSS OF BLOOM SYNDROME PROTEIN CAUSES DESTABILIZATION OF GENOMIC ARCHITECTURE AND IS COMPLEMENTED BY ECTOPIC EXPRESSION OF Escherichia coli RecG IN HUMAN CELLSKillen, Michael Wayne 01 January 2011 (has links)
Genomic instability driven by non-allelic homologous recombination (NAHR) provides a realistic mechanism that could account for the numerous chromosomal abnormalities that are hallmarks of cancer. We recently demonstrated that this type of instability could be assayed by analyzing the copy number variation of the human ribosomal RNA gene clusters (rDNA). Further, we found that gene cluster instability (GCI) was present in greater than 50% of the human cancer samples that were tested. Here, data is presented that confirms this phenomenon in the human GAGE gene cluster of those cancer patients. This adds credence to the hypothesis that NAHR could be a driving force for carcinogenesis. This data is followed by experimental results that demonstrate the same gene cluster instability in cultured cells that are deficient for the human BLM protein. Bloom’s Syndrome (BS) results from a genetic mutation that results in the abolition of BLM protein, one of human RecQ helicase. Studies of Bloom’s Syndrome have reported a 10-fold increase in sister chromatid exchanges during mitosis which has primarily been attributed to dysregulated homologous recombination. BS also has a strong predisposition to a broad spectrum of malignancies. Biochemical studies have determined that the BLM protein works in conjunction with TOPOIIIα and RMI1/RMI2 to function as a Holliday Junction dissolvase that suppress inadvertent crossover formation in mitotic cells. Because of the similarities in their biochemical activities it was suggested that another DNA helicase found in E. coli, the RecG DNA translocase, is the functional analog of BLM. RecG shares no sequence homology with BLM but it can complement both the sister chromatid exchange elevation and the gene- cluster instability phenotype caused by BLM deficiency. This indicates that the physiological function of BLM that is responsible for these phenotypes rests somewhere in the shared biochemical activities of these two proteins. These data taken together give new insights into the physiological mechanism of BLM protein and the use of Bloom’s Syndrome as a model for carcinogenesis.
|
40 |
Mechanisms of chromosomal instability induced by unstable DNA repeats in yeast S.cerevisiaeZhang, Yu 27 August 2014 (has links)
DNA repetitive sequences capable of adopting non-B DNA structures are a potent source of instability in eukaryotic genomes. They are strong inducers of chromosomal fragility and genome rearrangements that cause various hereditary diseases and cancers. In addition, a subset of repeats also has an ability to expand, which leads to more than 20 human genetic diseases that are collectively known as repeat expansion diseases. However, the mechanisms underlying the potential of these structure-prone motifs to break and expand are largely unknown.
In this study, a systematic genome-wide screen was employed in yeast Saccharomyces cerevisiae to investigate the contributing factors of the instability of two representative non-B DNA-forming repeats: the triplex-adopting GAA/TTC tracts and the inverted repeats that can form hairpin and cruciform structures.
The GAA/TTC screen revealed that DNA replication and transcription initiation are the two major pathways governing the GAA/TTC stability in yeast, as corresponding mutants strongly induce both fragility and large-scale expansions of the repeats. The inverted repeats screen and follow-up experiments revealed that both replication-dependent and -independent pathways are involved in maintaining the stability of palindromic sequences.
We propose that similar mechanisms could operate in the human cells to mediate the deleterious metabolism of GAA and inverted repeats.
|
Page generated in 0.0726 seconds