• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the QR Decomposition of H-Matrices

Benner, Peter, Mach, Thomas 28 August 2009 (has links) (PDF)
The hierarchical (<i>H-</i>) matrix format allows storing a variety of dense matrices from certain applications in a special data-sparse way with linear-polylogarithmic complexity. Many operations from linear algebra like matrix-matrix and matrix-vector products, matrix inversion and LU decomposition can be implemented efficiently using the <i>H</i>-matrix format. Due to its importance in solving many problems in numerical linear algebra like least-squares problems, it is also desirable to have an efficient QR decomposition of <i>H</i>-matrices. In the past, two different approaches for this task have been suggested. We will review the resulting methods and suggest a new algorithm to compute the QR decomposition of an <i>H</i>-matrix. Like other <i>H</i>-arithmetic operations the <i>H</i>QR decomposition is of linear-polylogarithmic complexity. We will compare our new algorithm with the older ones by using two series of test examples and discuss benefits and drawbacks of the new approach.
2

On the QR Decomposition of H-Matrices

Benner, Peter, Mach, Thomas 28 August 2009 (has links)
The hierarchical (<i>H-</i>) matrix format allows storing a variety of dense matrices from certain applications in a special data-sparse way with linear-polylogarithmic complexity. Many operations from linear algebra like matrix-matrix and matrix-vector products, matrix inversion and LU decomposition can be implemented efficiently using the <i>H</i>-matrix format. Due to its importance in solving many problems in numerical linear algebra like least-squares problems, it is also desirable to have an efficient QR decomposition of <i>H</i>-matrices. In the past, two different approaches for this task have been suggested. We will review the resulting methods and suggest a new algorithm to compute the QR decomposition of an <i>H</i>-matrix. Like other <i>H</i>-arithmetic operations the <i>H</i>QR decomposition is of linear-polylogarithmic complexity. We will compare our new algorithm with the older ones by using two series of test examples and discuss benefits and drawbacks of the new approach.

Page generated in 0.1062 seconds