Spelling suggestions: "subject:"hierarchische 1atrix"" "subject:"hierarchische béatrix""
1 |
Theorie und Anwendungen hierarchischer MatrizenGrasedyck, Lars. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2001--Kiel.
|
2 |
Implementation hierarchischer MatrizenJenz, Domenic. January 2005 (has links)
Stuttgart, Univ., Studienarb., 2005.
|
3 |
Hierarchical matrices a means to efficiently solve elliptic boundary value problems ; with 53 tablesBebendorf, Mario. January 2008 (has links)
Univ., Habil.-Schrift, 2007. / Literaturverz. S. 269 - 279.
|
4 |
On Multigrid and H-Matrix Methods for Partial Integro-Differential Equations / Mehrgitter-Verfahren und hierarchische Matrix-Lösungsverfahren für Klassen von partiellen Integro-Differential-ProblemenGathungu, Duncan Kioi January 2018 (has links) (PDF)
The main theme of this thesis is the development of multigrid and hierarchical matrix solution procedures with almost linear computational complexity for classes of partial integro-differential problems. An elliptic partial integro-differential equation, a convection-diffusion partial integro-differential equation and a convection-diffusion partial integro-differential optimality system are investigated. In the first part of this work, an efficient multigrid finite-differences scheme for solving an elliptic
Fredholm partial integro-differential equation (PIDE) is discussed. This scheme combines a second-order accurate finite difference discretization and a Simpson's quadrature rule to approximate the PIDE problem and a multigrid scheme and a fast
multilevel integration method of the Fredholm operator allowing the fast solution of the PIDE problem. Theoretical estimates of second-order accuracy and results of local Fourier analysis of convergence of the proposed multigrid scheme
are presented. Results of numerical experiments validate these estimates and demonstrate optimal computational complexity of the proposed framework that includes numerical experiments for elliptic PIDE problems with singular kernels. The experience gained in this part of the work is used for the investigation of convection diffusion partial-integro differential equations in the second part of this thesis.
Convection-diffusion PIDE problems are discretized using a finite volume scheme referred to as the Chang and Cooper (CC) scheme and a quadrature rule. Also for this class of PIDE problems and this numerical setting, a stability and accuracy analysis of the CC scheme combined with a Simpson's quadrature rule is presented proving second-order accuracy of the numerical solution. To extend and investigate the proposed approximation and solution strategy to the case of systems of convection-diffusion PIDE, an optimal control problem governed by this model is considered. In this case the research focus is the CC-Simpson's discretization of the optimality system and its solution by the proposed multigrid strategy. Second-order accuracy of the optimization solution is proved and results of local Fourier analysis are presented that provide sharp convergence estimates of the optimal computational complexity of the multigrid-fast integration technique.
While (geometric) multigrid techniques require ad-hoc implementation depending on the structure of the PIDE problem and on the dimensionality of the domain where the problem is considered, the hierarchical matrix framework allows a more general treatment that exploits the algebraic structure of the problem at hand. In this thesis, this framework is extended to the case of combined differential and integral problems considering the case of a convection-diffusion PIDE. In this case, the starting point is the CC discretization of the convection-diffusion operator combined with the trapezoidal quadrature rule. The hierarchical matrix approach exploits the algebraic nature of the hierarchical matrices for blockwise approximations by low-rank matrices of the sparse convection-diffusion approximation and enables data sparse representation of the fully populated matrix where all essential matrix operations are performed with at most logarithmic optimal complexity. The factorization of part of or the whole coefficient matrix is used as a preconditioner to the solution of the PIDE problem using a generalized minimum residual (GMRes) procedure as a solver.
Numerical analysis estimates of the accuracy of the
finite-volume and trapezoidal rule approximation are
presented and combined with estimates of the
hierarchical matrix approximation and with the
accuracy of the GMRes iterates. Results of numerical experiments are reported that
successfully validate the theoretical estimates and
the optimal computational complexity of the proposed hierarchical matrix
solution procedure. These results include an extension to higher dimensions and an application to the time evolution of the probability density function of a jump diffusion process. / Das Hauptthema dieser Arbeit ist die Entwicklung von Mehrgitter-Verfahren und hierarchischer Matrix-Lösungsverfahren mit nahezu linearer Rechenkomplexität für Klassen von partiellen Integro-Differential-Problemen. Es werden eine elliptische partielle Integro-Differentialgleichung, eine partielle Konvektions-Diffusions-Integro-Differentialgleichung und ein partielles Konvektions-Diffusions-Integro-Differential-Optimalitätssystem untersucht. Im ersten Teil dieser Arbeit wurde ein effizientes Mehrgitter-Finite-Differenzen-Schema zur Lösung einer elliptischen
Fredholm partiellen Integro-Differentialgleichungen (PIDE) diskutiert. Dieses Schema kombiniert eine exakte finite Differenzen-Diskretisierung zweiter Ordnung mit einer Quadraturregel von Simpson, um das PIDE-Problem mit einem Mehrgitter-Schema und einer schnellen
Multilevel-Integrationsmethode des Fredholm-Operators zu lösen, was eine schnelle Lösung des PIDE-Probleme ermöglicht. Theoretische Abschätzungen der Genauigkeit zweiter Ordnung und Ergebnisse der lokalen Fourier-Analyse der Konvergenz des vorgeschlagenen Mehrgitter-Systems
werden präsentiert. Ergebnisse von numerischen Experimenten validieren diese Schätzungen und demonstrieren die optimale rechnerische Komplexität des vorgeschlagenen Frameworks, das numerische Experimente für elliptische PIDE mit singulären Kernen beinhaltet. Die in diesem Teil der Arbeit gewonnenen Erfahrungen werden zur Untersuchung einer partielle Konvektions-Diffusions-Integro-Differentialgleichungen im zweiten Teil verwendet.
Konvektions-Diffusions-PIDE-Probleme werden unter Verwendung eines Finite-Volumen-Schemas, das als das Chang- Cooper- (CC-) Schema bezeichnet wird, und einer Quadraturregel diskretisiert. Auch für diese Klasse von PIDE-Problemen und diese numerische Einstellung wird eine Stabilitäts- und Genauigkeitsanalyse des CC-Schemas in Kombination mit einer Quadraturregel von Simpson vorgestellt, die die Genauigkeit der numerischen Lösung zweiter Ordnung beweist. Um die vorgeschlagene Approximations- und Lösungsstrategie auf den Fall von Konvektions-Diffusions-PIDE-Systemen auszudehnen und zu untersuchen, wird ein Optimalsteuerungsproblem mit diesem Modell als Nebenbedingung untersucht. Der Forschungsschwerpunkt liegt dabei auf der Diskretisierung des Optimalitätssystems durch die CC-Simpson-Lösung und dessen Lösung durch die vorgeschlagene Mehrgitter-Strategie. Die Genauigkeit der optimalen Lösung zweiter Ordnung wird bewiesen und es werden Ergebnisse der lokalen Fourier-Analyse präsentiert, die scharfe Konvergenz-Schätzungen der optimalen Berechnungskomplexität der schnellen Mehrgitter Integrationstechnik liefern.
Während (geometrische) Mehrgitterverfahren je nach Struktur des PIDE-Problems und der Dimensionalität des Gebietes, in dem das Problem berücksichtigt wird, eine Ad-hoc-Implementierung erfordern, ermöglicht das hierarchische Matrix-Framework eine allgemeinere Behandlung, die die algebraische Struktur des Problems nutzt. In dieser Arbeit wird dieses Verfahren auf den Fall kombinierter Differential- und Integralprobleme im Fall einer Konvektions-Diffusions-PIDE erweitert. In diesem Fall ist der Startpunkt die CC-Diskretisierung des Konvektions-Diffusions-Operators in Kombination mit der Trapez-Quadratur-Regel. Der hierarchische Matrixansatz nutzt die algebraische Natur der hierarchischen Matrizen für blockweise Approximationen durch niedrigrangige Matrizen der dünn besetzten Konvektions-Diffusionsmatrix und ermöglicht eine datenarme Darstellung der vollständig besetzten Matrix, bei der alle wesentlichen Matrixoperationen mit höchstens logarithmisch optimaler Komplexität durchgeführt werden. Die Faktorisierung eines Teils oder der gesamten Koeffizientenmatrix wird als Vorbedingung für die Lösung der PIDE-Probleme unter Verwendung eines verallgemeinerten minimalen Restwert-Verfahrens (GMRes) als Löser verwendet.
Eine numerische Analyse der Abschätzungen der Genauigkeit der
Finite-Volumen- und Trapezregel-Approximation werden
präsentiert und kombiniert mit Abschätzungen der
hierarchischen Matrix-Näherung und mit der
Genauigkeit der GMRes iterationen kombiniert. Ergebnisse numerischer Experimente werden vorgestellt,
die theoretischen Abschätzungen und
die optimale rechnerische Komplexität der vorgeschlagenen hierarchischen Matrix
Lösungsverfahren erfolgreich validieren. Diese Ergebnisse beinhalten eine Erweiterung auf höhere Dimensionen und eine Anwendung auf die zeitliche Entwicklung der Wahrscheinlichkeitsdichtefunktion des Sprungdiffusionsprozesses.
|
5 |
Lösung von Randintegralgleichungen zur Bestimmung der Kapazitätsmatrix von Elektrodenanordnungen mittels H-ArithmetikMach, Thomas. Benner, Peter. January 2008 (has links)
Chemnitz, Techn. Univ., Diplomarb., 2008.
|
6 |
Zur Approximation der Lösungen elliptischer Systeme partieller Differentialgleichungen mittels finiter Elemente und H- MatrizenSchreittmiller, Robert. Unknown Date (has links)
Techn. Universiẗat, Diss., 2006--München.
|
7 |
Lösung von Randintegralgleichungen zur Bestimmung der Kapazitätsmatrix von Elektrodenanordnungen mittels H -ArithmetikMach, Thomas 21 October 2008 (has links) (PDF)
Die Mikrosystemtechnik entwickelt sehr kleine Sensoren und Aktuatoren, deren Größe
wie der Name schon sagt in Mikrometern gemessen werden kann. Die meist aus
Silizium gefertigten Bauteile werden durch Dotierung elektrisch leitfähig. Die so erzeugten
Elektroden können nun mittels elektrostatischer Kräfte bewegt werden.
Für die numerische Simulation dieser System ist die Kenntnis der Kapazität dieser
Elektrodenanordnungen notwendig. In den folgenden Kapiteln wird eine Möglichkeit
der Bestimmung der Kapazitätsmatrix für solche Elektrodenanordnungen aufgezeigt.
Dazu werden wir zunächst im Kapitel 2 einige Begriffe der Elektrostatik definieren
und ihre Zusammenhänge erläutern. Danach werden wir im Kapitel 3 eine
Randintegralgleichung herleiten mit deren Hilfe eine Bestimmung der Kapazitätsmatrix
möglich ist. Um diese Gleichung zu Lösen werden wir sie im Kapitel 4 diskretisieren.
Diese Diskretisierung wird zu einem vollbesetzten Gleichungssystem führen.
Das Lösen dieses Gleichungssystems ist relativ teuer, daher wird in den Kapiteln 5
und 6 eine Approximation erläutert, die den Speicherbedarf und Rechenaufwand reduziert.
Im Kapitel 7 werden wir die Fehler, welche durch die Diskretisierung und die
Approximation entstehen, näher untersuchen. Abschließend werden wir im Kapitel 8
die Kapazitätsmatrizen einiger Beispiele berechnen und mit früheren Berechnungsergebnissen
vergleichen.
|
8 |
On the QR Decomposition of H-MatricesBenner, Peter, Mach, Thomas 28 August 2009 (has links) (PDF)
The hierarchical (<i>H-</i>) matrix format allows storing a variety of dense matrices from certain applications in a special data-sparse way with linear-polylogarithmic complexity. Many operations from linear algebra like matrix-matrix and matrix-vector products, matrix inversion and LU decomposition can be implemented efficiently using the <i>H</i>-matrix format. Due to its importance in solving many problems in numerical linear algebra like least-squares problems, it is also desirable to have an efficient QR decomposition of <i>H</i>-matrices. In the past, two different approaches for this task have been suggested. We will review the resulting methods and suggest a new algorithm to compute the QR decomposition of an <i>H</i>-matrix. Like other <i>H</i>-arithmetic operations the <i>H</i>QR decomposition is of linear-polylogarithmic complexity. We will compare our new algorithm with the older ones by using two series of test examples and discuss benefits and drawbacks of the new approach.
|
9 |
Lösung von Randintegralgleichungen zur Bestimmung der Kapazitätsmatrix von Elektrodenanordnungen mittels H -Arithmetik: Lösung von Randintegralgleichungen zur Bestimmung derKapazitätsmatrix von Elektrodenanordnungen mittels H -ArithmetikMach, Thomas 19 May 2008 (has links)
Die Mikrosystemtechnik entwickelt sehr kleine Sensoren und Aktuatoren, deren Größe
wie der Name schon sagt in Mikrometern gemessen werden kann. Die meist aus
Silizium gefertigten Bauteile werden durch Dotierung elektrisch leitfähig. Die so erzeugten
Elektroden können nun mittels elektrostatischer Kräfte bewegt werden.
Für die numerische Simulation dieser System ist die Kenntnis der Kapazität dieser
Elektrodenanordnungen notwendig. In den folgenden Kapiteln wird eine Möglichkeit
der Bestimmung der Kapazitätsmatrix für solche Elektrodenanordnungen aufgezeigt.
Dazu werden wir zunächst im Kapitel 2 einige Begriffe der Elektrostatik definieren
und ihre Zusammenhänge erläutern. Danach werden wir im Kapitel 3 eine
Randintegralgleichung herleiten mit deren Hilfe eine Bestimmung der Kapazitätsmatrix
möglich ist. Um diese Gleichung zu Lösen werden wir sie im Kapitel 4 diskretisieren.
Diese Diskretisierung wird zu einem vollbesetzten Gleichungssystem führen.
Das Lösen dieses Gleichungssystems ist relativ teuer, daher wird in den Kapiteln 5
und 6 eine Approximation erläutert, die den Speicherbedarf und Rechenaufwand reduziert.
Im Kapitel 7 werden wir die Fehler, welche durch die Diskretisierung und die
Approximation entstehen, näher untersuchen. Abschließend werden wir im Kapitel 8
die Kapazitätsmatrizen einiger Beispiele berechnen und mit früheren Berechnungsergebnissen
vergleichen.
|
10 |
On the QR Decomposition of H-MatricesBenner, Peter, Mach, Thomas 28 August 2009 (has links)
The hierarchical (<i>H-</i>) matrix format allows storing a variety of dense matrices from certain applications in a special data-sparse way with linear-polylogarithmic complexity. Many operations from linear algebra like matrix-matrix and matrix-vector products, matrix inversion and LU decomposition can be implemented efficiently using the <i>H</i>-matrix format. Due to its importance in solving many problems in numerical linear algebra like least-squares problems, it is also desirable to have an efficient QR decomposition of <i>H</i>-matrices. In the past, two different approaches for this task have been suggested. We will review the resulting methods and suggest a new algorithm to compute the QR decomposition of an <i>H</i>-matrix. Like other <i>H</i>-arithmetic operations the <i>H</i>QR decomposition is of linear-polylogarithmic complexity. We will compare our new algorithm with the older ones by using two series of test examples and discuss benefits and drawbacks of the new approach.
|
Page generated in 0.0643 seconds