Spelling suggestions: "subject:"randintegraloperator"" "subject:"integraloperator""
1 |
H 2 -wavelet Galerkin BEM and its application to the radiosity equationKähler, Ulf, January 2007 (has links)
Chemnitz, Techn. Univ., Diss., 2007.
|
2 |
H^2-wavelet Galerkin BEM and its application to the radiosity equationKähler, Ulf 23 November 2007 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit dem schnellen Lösen von Randintegralgleichungen auf
polygonalen oder polygonal approximierten Oberflächen
basierend auf Wavelet-Galerkinverfahren. Ein besonderes
Augenmerk gilt dabei der speziellen Problematik
der diffusen Beleuchtungsgleichung.
Während traditionelle Ansätze für Randintegralgleichungen
zu vollbesetzten Systemmatrizen und damit zu einem quadratischen
Aufwand führen, nutzen Waveletverfahren spezielle
Multiskalenbasen, die eine Kompression der Systemmatrix
zu einer dünnbesetzten Matrix und damit einen linear-logarithmischen
Aufwand ermöglichen.
In der Arbeit wird das H^2-Waveletverfahren als effiziente Umsetzung der
Waveletverfahren auf polygonal approximierten Oberflächen
basierend auf den Tausch-White-Wavelets entwickelt.
Es stellt eine Kombination aus H^2-Techniken, bekannt
von dem Gebiet der hierarchischen Matrizen, und rekusiven Wavelettechniken
dar. Zum besseren Verständnis werden dazu innerhalb der Arbeit in eigenen Kapiteln
das Wichtigste zu den Tausch-White-Wavelets, zu dem allgemeinen Waveletverfahren und
der Waveletkompression sowie zu den H^2-Matrizen präsentiert, bevor
das H^2-Waveletverfahren detailiert hergeleitet und der entsprechende linear-logarithmische
Aufwand bewiesen wird.
Der zweite Schwerpunkt der Arbeit liegt auf der diffusen Beleuchtungsgleichung.
Die in ihr enthaltene Sichbarkeitsproblematik verhindertete bis jetzt die Anwendung
moderner schneller Verfahren und die Reduktion der Kosten auf
linear-logarithmischen Aufwand. Mit Hilfe der in dieser Arbeit
neu entwickelten speziell auf die diffuse Beleuchtungsgleichung
angepassten Waveletkompression ist es jedoch möglich
ein dünnbesetzte Systemmatrix aufzustellen
und im Bereich des Speichers den gewünschten
linear-logarithmischen Aufwand zu erreichen.
Alle in der Arbeit entwickelten Algorithmen sind detailiert dargestellt
und mit numerische Ergebnissen unterlegt.
|
3 |
Lösung von Randintegralgleichungen zur Bestimmung der Kapazitätsmatrix von Elektrodenanordnungen mittels H -ArithmetikMach, Thomas 21 October 2008 (has links) (PDF)
Die Mikrosystemtechnik entwickelt sehr kleine Sensoren und Aktuatoren, deren Größe
wie der Name schon sagt in Mikrometern gemessen werden kann. Die meist aus
Silizium gefertigten Bauteile werden durch Dotierung elektrisch leitfähig. Die so erzeugten
Elektroden können nun mittels elektrostatischer Kräfte bewegt werden.
Für die numerische Simulation dieser System ist die Kenntnis der Kapazität dieser
Elektrodenanordnungen notwendig. In den folgenden Kapiteln wird eine Möglichkeit
der Bestimmung der Kapazitätsmatrix für solche Elektrodenanordnungen aufgezeigt.
Dazu werden wir zunächst im Kapitel 2 einige Begriffe der Elektrostatik definieren
und ihre Zusammenhänge erläutern. Danach werden wir im Kapitel 3 eine
Randintegralgleichung herleiten mit deren Hilfe eine Bestimmung der Kapazitätsmatrix
möglich ist. Um diese Gleichung zu Lösen werden wir sie im Kapitel 4 diskretisieren.
Diese Diskretisierung wird zu einem vollbesetzten Gleichungssystem führen.
Das Lösen dieses Gleichungssystems ist relativ teuer, daher wird in den Kapiteln 5
und 6 eine Approximation erläutert, die den Speicherbedarf und Rechenaufwand reduziert.
Im Kapitel 7 werden wir die Fehler, welche durch die Diskretisierung und die
Approximation entstehen, näher untersuchen. Abschließend werden wir im Kapitel 8
die Kapazitätsmatrizen einiger Beispiele berechnen und mit früheren Berechnungsergebnissen
vergleichen.
|
4 |
Lösung von Randintegralgleichungen zur Bestimmung der Kapazitätsmatrix von Elektrodenanordnungen mittels H -Arithmetik: Lösung von Randintegralgleichungen zur Bestimmung derKapazitätsmatrix von Elektrodenanordnungen mittels H -ArithmetikMach, Thomas 19 May 2008 (has links)
Die Mikrosystemtechnik entwickelt sehr kleine Sensoren und Aktuatoren, deren Größe
wie der Name schon sagt in Mikrometern gemessen werden kann. Die meist aus
Silizium gefertigten Bauteile werden durch Dotierung elektrisch leitfähig. Die so erzeugten
Elektroden können nun mittels elektrostatischer Kräfte bewegt werden.
Für die numerische Simulation dieser System ist die Kenntnis der Kapazität dieser
Elektrodenanordnungen notwendig. In den folgenden Kapiteln wird eine Möglichkeit
der Bestimmung der Kapazitätsmatrix für solche Elektrodenanordnungen aufgezeigt.
Dazu werden wir zunächst im Kapitel 2 einige Begriffe der Elektrostatik definieren
und ihre Zusammenhänge erläutern. Danach werden wir im Kapitel 3 eine
Randintegralgleichung herleiten mit deren Hilfe eine Bestimmung der Kapazitätsmatrix
möglich ist. Um diese Gleichung zu Lösen werden wir sie im Kapitel 4 diskretisieren.
Diese Diskretisierung wird zu einem vollbesetzten Gleichungssystem führen.
Das Lösen dieses Gleichungssystems ist relativ teuer, daher wird in den Kapiteln 5
und 6 eine Approximation erläutert, die den Speicherbedarf und Rechenaufwand reduziert.
Im Kapitel 7 werden wir die Fehler, welche durch die Diskretisierung und die
Approximation entstehen, näher untersuchen. Abschließend werden wir im Kapitel 8
die Kapazitätsmatrizen einiger Beispiele berechnen und mit früheren Berechnungsergebnissen
vergleichen.
|
5 |
H^2-wavelet Galerkin BEM and its application to the radiosity equationKähler, Ulf 05 November 2007 (has links)
Die vorliegende Arbeit beschäftigt sich mit dem schnellen Lösen von Randintegralgleichungen auf
polygonalen oder polygonal approximierten Oberflächen
basierend auf Wavelet-Galerkinverfahren. Ein besonderes
Augenmerk gilt dabei der speziellen Problematik
der diffusen Beleuchtungsgleichung.
Während traditionelle Ansätze für Randintegralgleichungen
zu vollbesetzten Systemmatrizen und damit zu einem quadratischen
Aufwand führen, nutzen Waveletverfahren spezielle
Multiskalenbasen, die eine Kompression der Systemmatrix
zu einer dünnbesetzten Matrix und damit einen linear-logarithmischen
Aufwand ermöglichen.
In der Arbeit wird das H^2-Waveletverfahren als effiziente Umsetzung der
Waveletverfahren auf polygonal approximierten Oberflächen
basierend auf den Tausch-White-Wavelets entwickelt.
Es stellt eine Kombination aus H^2-Techniken, bekannt
von dem Gebiet der hierarchischen Matrizen, und rekusiven Wavelettechniken
dar. Zum besseren Verständnis werden dazu innerhalb der Arbeit in eigenen Kapiteln
das Wichtigste zu den Tausch-White-Wavelets, zu dem allgemeinen Waveletverfahren und
der Waveletkompression sowie zu den H^2-Matrizen präsentiert, bevor
das H^2-Waveletverfahren detailiert hergeleitet und der entsprechende linear-logarithmische
Aufwand bewiesen wird.
Der zweite Schwerpunkt der Arbeit liegt auf der diffusen Beleuchtungsgleichung.
Die in ihr enthaltene Sichbarkeitsproblematik verhindertete bis jetzt die Anwendung
moderner schneller Verfahren und die Reduktion der Kosten auf
linear-logarithmischen Aufwand. Mit Hilfe der in dieser Arbeit
neu entwickelten speziell auf die diffuse Beleuchtungsgleichung
angepassten Waveletkompression ist es jedoch möglich
ein dünnbesetzte Systemmatrix aufzustellen
und im Bereich des Speichers den gewünschten
linear-logarithmischen Aufwand zu erreichen.
Alle in der Arbeit entwickelten Algorithmen sind detailiert dargestellt
und mit numerische Ergebnissen unterlegt.
|
Page generated in 0.0577 seconds