• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fredholm Theory and Stable Approximation of Band Operators and Their Generalisations

Lindner, Marko 23 July 2009 (has links) (PDF)
This text is concerned with the Fredholm theory and stable approximation of bounded linear operators generated by a class of infinite matrices $(a_{ij})$ that are either banded or have certain decay properties as one goes away from the main diagonal. The operators are studied on $\ell^p$ spaces of functions $\Z^N\to X$, where $p\in[1,\infty]$, $N\in\N$ and $X$ is a complex Banach space. The latter means that our matrix entries $a_{ij}$ are indexed by multiindices $i,j\in\Z^N$ and that every $a_{ij}$ is itself a bounded linear operator on $X$. Our main focus lies on the case $p=\infty$, where new results are derived, and it is demonstrated in both general theory and concrete operator equations from mathematical physics how advantage can be taken of these new $p=\infty$ results in the general case $p\in[1,\infty]$.
2

Factorization theory for Toeplitz plus Hankel operators and singular integral operators with flip

Ehrhardt, Torsten 02 September 2004 (has links) (PDF)
In this habilitation thesis a factorization theory for Toeplitz plus Hankel operators and singular integral operators with flip is established. These operators are considered with matrix-valued symbols and are thought of acting on the vector-valued analogues of the Hardy and Lebesgue spaces. A factorization theory for pure Toeplitz operators and singular integral operators without flip is known since decades and provides necessary and sufficient conditions for Fredholmness and formulas for the defect numbers. In particular, the invertibility of such operators is equivalent to the existence of a certain type of Wiener-Hopf factorization. In this thesis an analogous theory for the afore-mentioned more general classes of operators is developed. It turns out that a completely different kind of factorization is needed. This kind of factorization is studied extensively, and a corresponding Fredholm theory is established. A connection with the Hunt-Muckenhoupt-Wheeden condition is made, and several examples and applications are given as well. / In dieser Habilitationsschrift wird eine Faktorisierungstheorie für Toeplitz plus Hankel-Operatoren und singuläre Integraloperatoren mit Flip aufgestellt. Diese Operatoren werden mit matrixwertigem Symbol betrachtet und sind auf den vektorwertigen Analoga der Hardy- und Lebesgue-Räumen definiert. Eine Faktorisierungstheorie für reine Toeplitz bzw. singuläre Integraloperatoren ohne Flip ist seit Jahrzehnten bekannt. Sie liefert notwendige und hinreichende Bedingungen für die Fredholmeigenschaft und Formeln für die Defektzahlen. Insbesondere ist die Invertierbarkeit derartiger Operatoren äquivalent zur Existenz einer bestimmten Art der Wiener-Hopf-Faktorisierung. In dieser Habilitationsschrift wird eine entsprechende Theorie für die erwähnten, allgemeineren Klassen von Operatoren aufgestellt. Es stellt sich heraus, dass eine völlig andere Art der Faktorisierung benötigt wird. Diese Art der Faktorisierung wird eingehend studiert und eine entsprechende Fredholmtheorie wird entwickelt. Ein Zusammenhang mit der Hunt-Muckenhoupt-Wheeden Bedingung wird hergestellt. Mehrere Beispiele und Anwendungen werden ebenfalls angegeben.
3

Fredholm Theory and Stable Approximation of Band Operators and Their Generalisations

Lindner, Marko 09 July 2009 (has links)
This text is concerned with the Fredholm theory and stable approximation of bounded linear operators generated by a class of infinite matrices $(a_{ij})$ that are either banded or have certain decay properties as one goes away from the main diagonal. The operators are studied on $\ell^p$ spaces of functions $\Z^N\to X$, where $p\in[1,\infty]$, $N\in\N$ and $X$ is a complex Banach space. The latter means that our matrix entries $a_{ij}$ are indexed by multiindices $i,j\in\Z^N$ and that every $a_{ij}$ is itself a bounded linear operator on $X$. Our main focus lies on the case $p=\infty$, where new results are derived, and it is demonstrated in both general theory and concrete operator equations from mathematical physics how advantage can be taken of these new $p=\infty$ results in the general case $p\in[1,\infty]$.
4

Factorization theory for Toeplitz plus Hankel operators and singular integral operators with flip

Ehrhardt, Torsten 05 July 2004 (has links)
In this habilitation thesis a factorization theory for Toeplitz plus Hankel operators and singular integral operators with flip is established. These operators are considered with matrix-valued symbols and are thought of acting on the vector-valued analogues of the Hardy and Lebesgue spaces. A factorization theory for pure Toeplitz operators and singular integral operators without flip is known since decades and provides necessary and sufficient conditions for Fredholmness and formulas for the defect numbers. In particular, the invertibility of such operators is equivalent to the existence of a certain type of Wiener-Hopf factorization. In this thesis an analogous theory for the afore-mentioned more general classes of operators is developed. It turns out that a completely different kind of factorization is needed. This kind of factorization is studied extensively, and a corresponding Fredholm theory is established. A connection with the Hunt-Muckenhoupt-Wheeden condition is made, and several examples and applications are given as well. / In dieser Habilitationsschrift wird eine Faktorisierungstheorie für Toeplitz plus Hankel-Operatoren und singuläre Integraloperatoren mit Flip aufgestellt. Diese Operatoren werden mit matrixwertigem Symbol betrachtet und sind auf den vektorwertigen Analoga der Hardy- und Lebesgue-Räumen definiert. Eine Faktorisierungstheorie für reine Toeplitz bzw. singuläre Integraloperatoren ohne Flip ist seit Jahrzehnten bekannt. Sie liefert notwendige und hinreichende Bedingungen für die Fredholmeigenschaft und Formeln für die Defektzahlen. Insbesondere ist die Invertierbarkeit derartiger Operatoren äquivalent zur Existenz einer bestimmten Art der Wiener-Hopf-Faktorisierung. In dieser Habilitationsschrift wird eine entsprechende Theorie für die erwähnten, allgemeineren Klassen von Operatoren aufgestellt. Es stellt sich heraus, dass eine völlig andere Art der Faktorisierung benötigt wird. Diese Art der Faktorisierung wird eingehend studiert und eine entsprechende Fredholmtheorie wird entwickelt. Ein Zusammenhang mit der Hunt-Muckenhoupt-Wheeden Bedingung wird hergestellt. Mehrere Beispiele und Anwendungen werden ebenfalls angegeben.
5

Best constants in Markov-type inequalities with mixed weights / Kleinste Konstanten in Markovungleichungen mit unterschiedlichen Gewichten

Langenau, Holger 19 April 2016 (has links) (PDF)
Markov-type inequalities provide upper bounds on the norm of the (higher order) derivative of an algebraic polynomial in terms of the norm of the polynomial itself. The present thesis considers the cases in which the norms are of the Laguerre, Gegenbauer, or Hermite type, with respective weights chosen differently on both sides of the inequality. An answer is given to the question on the best constant so that such an inequality is valid for every polynomial of degree at most n. The demanded best constant turns out to be the operator norm of the differential operator. The latter conicides with the tractable spectral norm of its matrix representation in an appropriate set of orthonormal bases. The methods to determine these norms vary tremendously, depending on the difference of the parameters accompanying the weights. Up to a very small gap in the parameter range, asymptotics for the best constant in each of the aforementioned cases are given. / Markovungleichungen liefern obere Schranken an die Norm einer (höheren) Ableitung eines algebraischen Polynoms in Bezug auf die Norm des Polynoms selbst. Diese vorliegende Arbeit betrachtet den Fall, dass die Normen vom Laguerre-, Gegenbauer- oder Hermitetyp sind, wobei die entsprechenden Gewichte auf beiden Seiten unterschiedlich gewählt werden. Es wird die kleinste Konstante bestimmt, sodass diese Ungleichung für jedes Polynom vom Grad höchstens n erfüllt ist. Die gesuchte kleinste Konstante kann als die Operatornorm des Differentialoperators dargestellt werden. Diese fällt aber mit der Spektralnorm der Matrixdarstellung in einem Paar geeignet gewählter Orthonormalbasen zusammen und kann daher gut behandelt werden. Zur Abschätzung dieser Normen kommen verschiedene Methoden zum Einsatz, die durch die Differenz der in den Gewichten auftretenden Parameter bestimmt werden. Bis auch eine kleine Lücke im Parameterbereich wird das asymptotische Verhalten der kleinsten Konstanten in jedem der betrachteten Fälle ermittelt.
6

Best constants in Markov-type inequalities with mixed weights

Langenau, Holger 18 March 2016 (has links)
Markov-type inequalities provide upper bounds on the norm of the (higher order) derivative of an algebraic polynomial in terms of the norm of the polynomial itself. The present thesis considers the cases in which the norms are of the Laguerre, Gegenbauer, or Hermite type, with respective weights chosen differently on both sides of the inequality. An answer is given to the question on the best constant so that such an inequality is valid for every polynomial of degree at most n. The demanded best constant turns out to be the operator norm of the differential operator. The latter conicides with the tractable spectral norm of its matrix representation in an appropriate set of orthonormal bases. The methods to determine these norms vary tremendously, depending on the difference of the parameters accompanying the weights. Up to a very small gap in the parameter range, asymptotics for the best constant in each of the aforementioned cases are given. / Markovungleichungen liefern obere Schranken an die Norm einer (höheren) Ableitung eines algebraischen Polynoms in Bezug auf die Norm des Polynoms selbst. Diese vorliegende Arbeit betrachtet den Fall, dass die Normen vom Laguerre-, Gegenbauer- oder Hermitetyp sind, wobei die entsprechenden Gewichte auf beiden Seiten unterschiedlich gewählt werden. Es wird die kleinste Konstante bestimmt, sodass diese Ungleichung für jedes Polynom vom Grad höchstens n erfüllt ist. Die gesuchte kleinste Konstante kann als die Operatornorm des Differentialoperators dargestellt werden. Diese fällt aber mit der Spektralnorm der Matrixdarstellung in einem Paar geeignet gewählter Orthonormalbasen zusammen und kann daher gut behandelt werden. Zur Abschätzung dieser Normen kommen verschiedene Methoden zum Einsatz, die durch die Differenz der in den Gewichten auftretenden Parameter bestimmt werden. Bis auch eine kleine Lücke im Parameterbereich wird das asymptotische Verhalten der kleinsten Konstanten in jedem der betrachteten Fälle ermittelt.

Page generated in 0.0792 seconds