• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 2
  • 2
  • 1
  • Tagged with
  • 23
  • 15
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Structural characterisation of the interaction between RBBP6 and the multifunctional protein YB-1

Muleya, Victor January 2010 (has links)
Magister Scientiae - MSc / As a means of further localising the interaction, truncated fragments derived from the C-terminal region of YB-1, were tested for their interaction with the RING finger domain of RBBP6 using three different assays: a directed yeast 2-hybrid assay, co-immunoprecipitation and NMR chemical shift perturbation analysis. Our results suggest that the entire 62 amino acid region at the C-terminal domain of YB-1 may be involved in the interaction with RBBP6. Using chemical shift perturbation analysis, this study provides an indication of where YB-1 binds to the RING finger. This represents the first step towards the design of therapeutics aimed at modulating the interaction between RBBP6 and YB-1 as a means of targeting the oncogenic effects of YB-1. In order to identify E2 enzymes involved in the ubiquitination of YB-1, we examined the efficiencies of selected E2s in an in vitro ubiquitination assay. UbcH5c and UbcH7 were both found to catalyse the ubiquitination of YB-1 in conjuction with RBBP6, whereas Ubc13 was not. Finally, we show using NMR that two single-point mutations of the RING finger-like domain are sufficient to abolish homodimerisation of the domain. These will be used in future studies to investigate the requirement for homodimerisation on the ubiquitination activity of RBBP6. / South Africa
12

Structural characterisation of the interaction between RBBP6 and the multifunctional protein YB-l

Muleya, Victor January 2010 (has links)
>Magister Scientiae - MSc / Retinoblastoma binding protein 6 (RBBP6) is a 250 kDa RING finger-containing protein whose function is known to be mediated through interaction with other proteins. RBBP6 plays a role in the regulation of the tumour suppressor protein p53 and is also thought to be involved in mRNA splicing although its role has yet to be characterised. A recent study utilising a yeast 2-hybrid screen identified the cancer-associated protein known as YB-l as an interacting partner of RBBP6, and showed that RBBP6 ubiquitinates YB-I, leading to its degradation in the proteasome.Human Y-box binding protein 1 (YB-I) is member of the cold-shock domain family of proteins, which regulates a number of growth related genes through both transcriptional and translational mechanisms. YB-l is a cell-survival factor whose expression is increased in proliferating normal and cancer cells. It also protects cells against p53-mediated apoptosis by repressing the p53- promoter and down-regulating endogenous p53. The interaction between RBBP6 and YB-l involves the RING finger-like domain ofRBBP6 and the C-terminal62 amino acids ofYB-l. As a means of further localising the interaction, truncated fragments derived from the C-terminal region of YB-I, were tested for their interaction with the RING finger domain of RBBP6 using three different assays: a directed yeast 2-hybrid assay, co-immunoprecipitation and NMR chemical shift perturbation analysis. Our results suggest that the entire 62 amino acid region at the C-terminal domain ofYB-l may be involved in the interaction with RBBP6. Using chemical shift perturbation analysis, this study provides an indication of where YB-l binds to the RING fmger. This represents the first step towards the design of therapeutics aimed at modulating the interaction between RBBP6 and YB-l as a means of targeting the oncogenic effects ofYB-l. In order to identify E2 enzymes involved in the ubiquitination of YB-I, we examined the efficiencies of selected E2s in an in vitro ubiquitination assay. UbcH5c and UbcH7 were both found to catalyse the ubiquitination of YB-l in conjuction with RBBP6, whereas Ubc 13 was not. Finally, we show using NMR that two single-point mutations of the RING finger-like domain are sufficient to abolish homodimerisation of the domain. These will be used in future studies to investigate the requirement for homodimerisation on the ubiquitination activity of RBBP6. www.etd.
13

Advanced NMR Studies of Fluoropolymers

Li, Xiaohong 29 July 2011 (has links)
No description available.
14

<p>Mechanistic Insights into</p><p>The Physiology of Bile acids and Retinoids</p>

Badiee, Mohsen 01 February 2018 (has links)
No description available.
15

Evidence for chemical binding of proteinaceous materials to humic acids as a means for their preservation in the environment

Hsu, Pang-Hung 29 September 2004 (has links)
No description available.
16

Indexation de spectres HSQC et d’images IRMf appliquée à la détection de bio-marqueurs / Indexing of HSQC spectra and FMRI images for biomarker identification

Belghith, Akram 30 March 2012 (has links)
Les techniques d'acquisition des signaux médicaux sont en constante évolution et fournissent une quantité croissante de données hétérogènes qui doivent être analysées par le médecin. Dans ce contexte, des méthodes automatiques de traitement des signaux médicaux sont régulièrement proposées pour aider l'expert dans l'analyse qualitative et quantitative en facilitant leur interprétation. Ces méthodes doivent tenir compte de la physique de l'acquisition, de l'a priori que nous avons sur ces signaux et de la quantité de données à analyser pour une interprétation plus précise et plus fiable. Dans cette thèse, l'analyse des tissus biologique par spectroscopie RMN et la recherche des activités fonctionnelles cérébrales et leurs connectivités par IRMf sont explorées pour la recherche de nouveaux bio-marqueurs. Chaque information médicale sera caractérisée par un ensemble d'objets que nous cherchons à extraire, à aligner, et à coder. Le regroupement de ces objets par la mesure de leur similitude permettra leur classification et l'identification de bio-marqueurs. C'est ce schéma global d'indexation et de recherche par le contenu d'objets pour la détection des bio-marqueurs que nous proposons. Pour cela, nous nous sommes intéressés dans cette thèse à modéliser et intégrer les connaissances a priori que nous avons sur ces signaux biologiques permettant ainsi de proposer des méthodes appropriées à chaque étape d'indexation et à chaque type de signal. / The medical signal acquisition techniques are constantly evolving in recent years and providing an increasing amount of data which should be then analyzed. In this context, automatic signal processing methods are regularly proposed to assist the expert in the qualitative and quantitative analysis of these images in order to facilitate their interpretation. These methods should take into account the physics of signal acquisition, the a priori we have on the signal formation and the amount of data to analyze for a more accurate and reliable interpretation. In this thesis, we focus on the two-dimensional 2D Heteronuclear Single Quantum Coherence HSQC spectra obtained by High-Resolution Magic Angle Spinning HR-MAS NMR for biological tissue analysis and the functional Magnetic Resonance Imaging fMRI images for functional brain activities analysis. Each processed medical information will be characterized by a set of objects that we seek to extract, align, and code. The clustering of these objects by measuring their similarity will allow their classification and then the identification of biomarkers. It is this global content-based object indexing and retrieval scheme that we propose. We are interested in this thesis to properly model and integrate the a priori knowledge we have on these biological signal allowing us to propose there after appropriate methods to each indexing step and each type of signal.
17

Islet Neogenesis Associated Protein-Related Protein: From Gene to Folded Protein

Kulis, Michael D., Jr. 12 January 2006 (has links)
Type 1 diabetes is the direct result of an autoimmune attack on the pancreatic islet cells. The islets contain b cells, which are the only type of cell capable of supplying insulin in the human body. The destruction of these cells leaves the diabetic to rely on exogenous insulin to maintain a normal blood sugar level. Insulin therapy allows the diabetic to deal with the symptoms of the disease, but does nothing for the underlying condition. In order to truly cure the disease, the strategy is to replenish the b cells in the diabetic. Islet neogenesis associated protein (INGAP) has been shown to regenerate islet cells and reverse experimentally-induced diabetes in animal models. The INGAP pentadecapeptide is a 15 amino acid peptide from INGAP with comparable activity to the full-length protein. This 15-mer is undergoing clinical trials for treating diabetes. The overall goal of the project described in this work is to determine the structure of the INGAP pentadecapeptide for use in structure-based drug design of non-peptide mimics of the 15-mer. The first set of experiments in the present work directly examined the 15-mer in solution using NMR. No stable structure of the small peptide was found. The second set of experiments involved a homolog of INGAP, called INGAP-related protein, or INGAPrP. INGAPrP was recombinantly produced in E. coli and subsequently purified and refolded. Refolding of INGAPrP was verified by a 1H-15N HSQC experiment. CD experiments supported the NMR study, indicating helical content in INGAPrP. The folded nature of the protein will allow for the three-dimensional structure of INGAPrP to be determined. The protein structure will show the fold of the 15-mer within the full-length protein. This information will be valuable for the ultimate goal of producing structural mimics of the INGAP pentadecapeptide. Non-peptide mimics should have better oral bioavailability and longer half-lives in vivo.
18

Characterization of the Interactions of the Bacterial Cell Division Regulator MinE

Hafizi, Fatima 23 August 2012 (has links)
Symmetric cell division in gram-negative bacteria is essential for generating two equal-sized daughter cells, each containing cellular material crucial for growth and future replication. The Min system, comprised of proteins MinC, MinD and MinE, is particularly important for this process since its deletion leads to minicells incapable of further replication. This thesis focuses on the interactions involving MinE that are important for allowing cell division at the mid-cell and for directing the dynamic localization of MinD that is observed in vivo. Previous experiments have shown that the MinE protein contains an N-terminal region that is required to stimulate MinD-catalyzed ATP hydrolysis in the Min protein interaction cycle. However, MinD-binding residues in MinE identified by in vitro MinD ATPase assays were subsequently found to be buried in the hydrophobic dimeric interface in the MinE structure, raising the possibility that these residues are not directly involved in the interaction. To address this issue, the ability of N-terminal MinE peptides to stimulate MinD activity was studied to determine the role of these residues in MinD activation. Our results implied that MinE likely undergoes a change in conformation or oligomerization state before binding MinD. In addition we performed circular dichroism spectroscopy of MinE. The data suggest that direct interactions between MinE and the lipid membrane can lead to conformational changes in MinE. Using NMR spectroscopy in an attempt to observe this structure change, different membrane-mimetic environments were tested. However the results strongly suggest that structural studies on the membrane-bound state of MinE will pose significant challenges. Taken together, the results in this thesis open the door for further exploration of the interactions involving MinE in order to gain a better understanding of the dynamic localization patterns formed by these proteins in vivo.
19

Characterization of the Interactions of the Bacterial Cell Division Regulator MinE

Hafizi, Fatima 23 August 2012 (has links)
Symmetric cell division in gram-negative bacteria is essential for generating two equal-sized daughter cells, each containing cellular material crucial for growth and future replication. The Min system, comprised of proteins MinC, MinD and MinE, is particularly important for this process since its deletion leads to minicells incapable of further replication. This thesis focuses on the interactions involving MinE that are important for allowing cell division at the mid-cell and for directing the dynamic localization of MinD that is observed in vivo. Previous experiments have shown that the MinE protein contains an N-terminal region that is required to stimulate MinD-catalyzed ATP hydrolysis in the Min protein interaction cycle. However, MinD-binding residues in MinE identified by in vitro MinD ATPase assays were subsequently found to be buried in the hydrophobic dimeric interface in the MinE structure, raising the possibility that these residues are not directly involved in the interaction. To address this issue, the ability of N-terminal MinE peptides to stimulate MinD activity was studied to determine the role of these residues in MinD activation. Our results implied that MinE likely undergoes a change in conformation or oligomerization state before binding MinD. In addition we performed circular dichroism spectroscopy of MinE. The data suggest that direct interactions between MinE and the lipid membrane can lead to conformational changes in MinE. Using NMR spectroscopy in an attempt to observe this structure change, different membrane-mimetic environments were tested. However the results strongly suggest that structural studies on the membrane-bound state of MinE will pose significant challenges. Taken together, the results in this thesis open the door for further exploration of the interactions involving MinE in order to gain a better understanding of the dynamic localization patterns formed by these proteins in vivo.
20

Characterization of the Interactions of the Bacterial Cell Division Regulator MinE

Hafizi, Fatima January 2012 (has links)
Symmetric cell division in gram-negative bacteria is essential for generating two equal-sized daughter cells, each containing cellular material crucial for growth and future replication. The Min system, comprised of proteins MinC, MinD and MinE, is particularly important for this process since its deletion leads to minicells incapable of further replication. This thesis focuses on the interactions involving MinE that are important for allowing cell division at the mid-cell and for directing the dynamic localization of MinD that is observed in vivo. Previous experiments have shown that the MinE protein contains an N-terminal region that is required to stimulate MinD-catalyzed ATP hydrolysis in the Min protein interaction cycle. However, MinD-binding residues in MinE identified by in vitro MinD ATPase assays were subsequently found to be buried in the hydrophobic dimeric interface in the MinE structure, raising the possibility that these residues are not directly involved in the interaction. To address this issue, the ability of N-terminal MinE peptides to stimulate MinD activity was studied to determine the role of these residues in MinD activation. Our results implied that MinE likely undergoes a change in conformation or oligomerization state before binding MinD. In addition we performed circular dichroism spectroscopy of MinE. The data suggest that direct interactions between MinE and the lipid membrane can lead to conformational changes in MinE. Using NMR spectroscopy in an attempt to observe this structure change, different membrane-mimetic environments were tested. However the results strongly suggest that structural studies on the membrane-bound state of MinE will pose significant challenges. Taken together, the results in this thesis open the door for further exploration of the interactions involving MinE in order to gain a better understanding of the dynamic localization patterns formed by these proteins in vivo.

Page generated in 0.0256 seconds