81 |
Transportní procesy v hydrogelech / Transport processes in hydrogelsSárová, Michaela January 2017 (has links)
This master's thesis is focused on study of transport processes in hydrogels based on humic acids. For this purpose is used methods unsteady diffusion in cuvettes, which was studied the transport of organic dyes, specifically methylene blue and rhodamine 6G, in agarose hydrogel without the addition and with the addition of individual standards humic acids (Leonardite, Elliott Soil, Suwannee River II and Pahokee Peat). This method is based on spectrophotometric monitoring of concentration changes of dyes depending on space of the cuvette and on time. The aim of this thesis was to investigate the effects of interactions between diffusing dye and the particular type of gel to the resultant effective diffusion coefficient of dye. The experiments indicate that the presence of humic acid in the hydrogel greatly affects the transport of selected dyes.
|
82 |
Studium bariérových a transportních vlastností vybraných polyelektrolytů v hydrogelových matricích pomocí difúzních technik / Study of barrier and transport properties of polyelectrolytes using diffusion techniques in hydrogelsValentová, Kristýna January 2017 (has links)
This diploma thesis was focused on study of barrier and transport properties of selected polyelectrolytes in hydrogel matrices by using diffusion techniques. The study of these properties was performed in horizontal diffusion cells where is observed the change in diffusion probe concentration over time. Diffusion experiments were performed on an agarose hydrogel with the addition of alginate, hyaluronic acid, polystyrene sulfonate, humic acids and as a model probe rhodamine 6G was used. Important parts of this thesis are also the methods which characterize the substances and hydrogel matrices such as rheology and potentiometric titration. The main aim of this diploma thesis was to investigate the effect of interactions between passing model dye (rhodamine 6G) and the appropriate gel (agarose + polyelectrolyte) on the fundamental diffusion parameters (effective diffusion coefficient, lag time, etc.).
|
83 |
Stabilisierung des Stoffwechsels bei Milchkühen im peripartalen ZeitraumLeidel, Ines 02 February 2016 (has links)
Einleitung: Bei Milchkühen häufen sich Erkrankungen in der Frühlaktation. Sie gehören zu den wichtigsten Ursachen frühzeitiger Merzung und damit der aktuell unbefriedigenden Nutzungsdauer.
Ziele der Untersuchungen: Ziel dieser Arbeit war es, den Stoffwechsel von Milchkühen in der kritischen Übergangszeit vom Trockenstehen zur Laktation (Transitphase) durch drei verschiedene prophylaktische Maßnahmen zu stabilisieren:
mittels Huminsäuren Belastungen aus dem Darm einschließlich
Endotoxinen zu mindern, mit einem Ammoniumpropionat-Propylenglykol-
Gemisch die Energieversorgung zu verbessern sowie mit Dexamethason-21-isonicotinat die Stoffwechselfunktion der Leber zu fördern sowie gleichzeitig Entzündungsprozesse infolge der Kalbung zu hemmen.
Materialien und Methoden: Die Untersuchungen wurden in einem sächsischen Bestand an 312 Kühen der Rasse „Holstein Friesian“ randomisiert innerhalb eines Jahres durchgeführt. An jeweils 78 Kühe wurden 300 ml Ammoniumpropionat-Propylenglykol-Gemisch(C3) täglich vom 14. Tag ante partum (a.p.) bis zum 14. Tag post partum (p.p.) oral verabreicht; ebenfalls oral wurden 100 g Huminsäure-Fertigpräparat (HS-FP) bzw. 50 g Huminsäuren-Rohstoff (HS-RS) im selben Zeitraum appliziert, und Dexamethason-21-isonicotinat (DEXA21) wurde einmalig am 1. Tag p.p. intramuskulär in der Dosierung 0,02 mg/kg Körpermasse verabreicht. 78 unbehandelte Kühe dienten als Kontrollgruppe. Die Auswirkungen dieser Maßnahmen auf Gesundheit, Leistung und Stoffwechsel wurden durch klinische Untersuchungen, durch Blutkontrollen am 14. Tag a.p., am 3. und 28. Tag p.p. (Leukozyten, freie Fettsäuren [FFS], Bilirubin, ß-0H-Butyrat[BHB], Glucose, Cholesterol, Creatinkinase [CK], Aspartat-Amino-Transferase [ASAT], Glutamat-Dehydrogenase [GLDH], gamma-Glutaryl-Transferase [GGT], Protein, Albumin, Mg, Fe, Ca, anorganisches Phosphat [Pi], Na, K) sowie durch die Erfassung von Gesundheitsstatus, Milchleistung und Fruchtbarkeit zu bestimmten Zeitpunkten geprüft.
Ergebnisse: Die verschiedenen prophylaktischen Maßnahmen hatten keinen signifikanten Einfluss auf Fruchtbarkeits- und Gesundheitsparameter. Bei den absoluten und fettkorrigierten Milchmengen konnten ebenfalls keine statistisch gesicherten Unterschiede zwischen den Versuchsgruppen und der Kontrollgruppe
festgestellt werden. Der Milcheiweißgehalt von C3 28 d p.p. sowie der
Milchfettgehalt von DEXA21 und C3 100 d p.p. waren signifikant erhöht.
Die Ergebnisse der Blutuntersuchungen ergaben hauptsächlich am 3., aber auch am 28. Tag p.p. gesicherte Unterschiede bei wichtigen Stoffwechselparametern wie Glucose, Cholesterol, Bilirubin, Protein, Albumin, Ca, Fe und CK.
Die einmalige Gabe von Dexamethason-21-isonicotinat am 1. Tag p.p. hatte den besten Einfluss auf den Leber- und Energiestoffwechsel. In dieser Gruppe waren am 3. Tag p.p. die Glucose-, Bilirubin-, Cholesterol-, Protein, Ca- und Fe-Konzentrationen sowohl gegenüber der KG wie auch gegenüber allen anderen Versuchsgruppen signifikant günstiger. Für die Albumin- und Na-Konzentrationen sowie die CK-Aktivität traf das gegenüber der Kontroll- sowie der C3-Gruppe zu. Der Einsatz der Wirkstoffe mit HS-RS, HS-FP sowie C3 führte ebenfalls zu positiven Effekten auf die Leistung und den Stoffwechsel
gegenüber der Kontrollgruppe, jedoch ließen sich diese nur in wenigen Fällen statistisch sichern.
Schlussfolgerungen: Die Applikation von Dexamethason-21-isonicotinat einen Tag p.p. stabilisiert signifikant den Stoffwechsel von Kühen nach dem Partus.
Gleichartige Effekte auf Milch- und Fruchtbarkeitsleitung sowie die Morbidität konnten nicht gesichert nachgewiesen werden. Für Huminsäure-Rohstoff, Huminsäure-Fertigpräparat sowie Ammoniumpropionat-Propylenglykol-Gemisch waren solche Effekte tendenziell erkennbar, statistisch aber nicht zu sichern. Auch wenn besonders mit Dexamethason-21-isonicotinat der Stoffwechsel
in Belastungssituationen kurzfristig stabilisiert werden kann, müssen
generell Haltung und Fütterung analysiert sowie Mängel beseitigt werden.:Inhaltsverzeichnis
Inhaltsverzeichnis .I
Abkürzungsverzeichnis IV
1 Einleitung .......................................................................................... 1
2 Literaturübersicht ............................................................................. 3
2.1 Stoffwechsel der Milchkuh im geburtsnahen Zeitraum ....................... 3
2.2 Bovine Ketose .................................................................................... 5
2.3 Fettmobilisationssyndrom ................................................................... 7
2.4 Möglichkeiten der Stabilisierung des Stoffwechsels der Milchkuh im
geburtsnahen Zeitraum ...................................................................... 9
2.4.1 Allgemeines zur Stoffwechselstabilisierung ........................................ 9
2.4.2 Energiereiche C3-Verbindungen ...................................................... 11
2.4.2.1 Propionat .......................................................................................... 12
2.4.2.2 Propylenglykol .................................................................................. 14
2.4.2.3 Ammoniumpropionat-Propylenglykol-Gemisch ................................ 15
2.4.3 Huminsäuren .................................................................................... 16
2.4.3.1 Einsatz, Vorkommen, Aufbau ........................................................... 16
2.4.3.2 Effekte .............................................................................................. 16
2.4.3.3 Wirkungsweise im Organismus ........................................................ 17
2.4.3.4 Anwendungen in der Veterinärmedizin ............................................. 18
2.4.3.5 Huminsäurenpräparate ..................................................................... 20
2.4.4 Glukokortikoide................................................................................. 21
2.4.4.1 Aufbau .............................................................................................. 21
2.4.4.2 Wirkungsweise ................................................................................. 21
2.4.4.3 Effekte .............................................................................................. 22
2.4.4.4 Dexamethason-21-isonicotinat ......................................................... 25
3 Tiere, Material und Methoden ........................................................ 27
3.1 Untersuchte Tiere, Betrieb, Fütterung .............................................. 27
3.2 Versuchsanordnung, Gruppeneinteilung .......................................... 28
3.3 Entnahme, Aufbereitung und Aufbewahrung der Blutproben ........... 30
3.4 Bestimmung der Blutparameter, Referenzbereiche ......................... 31
3.4.1 Bestimmung der Leistungs-, Gesundheits- und
Fruchtbarkeitsparameter .................................................................. 33
3.5 Statistische Prüfung der ermittelten Daten ....................................... 35
4 Ergebnisse ...................................................................................... 36
4.1 Methodische Aspekte ....................................................................... 36
4.1.1 Wertung der Untersuchungsergebnisse kranker und selektierter
Kühe ................................................................................................ 36
4.1.2 Akzeptanz der verabreichten Futterzusatzstoffe .............................. 37
4.2 Klinische Befunde ............................................................................. 38
4.3 Leistungsparameter .......................................................................... 41
4.3.1 Milchleistung .................................................................................... 41
4.3.2 Fruchtbarkeit .................................................................................... 44
4.4 Labordiagnostische Parameter......................................................... 45
4.4.1 Energie-Fett-Leberstoffwechsel ....................................................... 45
4.4.1.1 Glucose ............................................................................................ 45
4.4.1.2 Cholesterol ....................................................................................... 47
4.4.1.3 Bilirubin ............................................................................................ 48
4.4.1.4 Beta-Hydroxy-Butyrat ....................................................................... 49
4.4.1.5 Freie Fettsäuren ............................................................................... 50
4.4.1.6 Aspartat-Amino-Transferase ............................................................ 51
4.4.1.7 Gamma-Glutamyl-Transferase ......................................................... 52
4.4.1.8 Glutamat-Dehydrogenase ................................................................ 53
4.4.2 Eiweißstoffwechsel ........................................................................... 54
4.4.2.1 Gesamtprotein .................................................................................. 54
4.4.2.2 Albumin ............................................................................................ 55
4.4.3 Mineralstoff- und Spurenelementstoffwechsel .................................. 56
4.4.3.1 Natrium ............................................................................................. 56
4.4.3.2 Kalium .............................................................................................. 57
4.4.3.3 Calcium ............................................................................................ 58
4.4.3.4 anorganisches Phosphat .................................................................. 59
4.4.3.5 Magnesium ....................................................................................... 60
4.4.3.6 Eisen ................................................................................................ 61
4.4.4 Muskelstoffwechsel .......................................................................... 62
4.4.4.1 Kreatinkinase ................................................................................... 62
4.4.5 Leukozyten ....................................................................................... 63
5 Diskussion ...................................................................................... 64
5.1 Klinische Parameter ......................................................................... 64
5.1.1 Morbidität ......................................................................................... 64
5.1.2 Milchleistung .................................................................................... 67
5.1.3 Fruchtbarkeit .................................................................................... 70
5.2 Klinisch-chemische Parameter, Stoffwechsel ................................... 71
5.2.1 Wirkung von Huminsäuren auf den Stoffwechsel ............................. 71
5.2.2 Wirkung einer energiereichen C3-Verbindung auf den Stoffwechsel 71
5.2.3 Wirkung von Dexamethason-21-isonicotinat auf den Stoffwechsel .. 74
6 Zusammenfassung ......................................................................... 83
7 Summary ......................................................................................... 85
8 Literaturverzeichnis ....................................................................... 87 / Problem: In dairy cattle diseases are common in early lactation. They are among the main causes of early culling and the current unsatisfactory productive life.
Objective: The aim of this work was to stabilize metabolism of dairy cows in the critical transition period from standing dry to lactation by three different prophylactic applications: using humic acids to minimize strain from the gut including endotoxins, using ammonium propionate mixed with propylene glycol to improve energy supply and dexamethasone-21-isonicotinate to promote metabolic function of the liver and at the same time to inhibit inflammatory processes following parturition.
Experimental design: The studies were performed in a Saxon dairy farm on 312 cows of the „Holstein Friesian\" breed, randomly performed within one year.
78 cows were administered orally 300 ml ammonium propionate mixed with propylene glycol (C3) daily from 14 days before parturition (a.p.) to 14 days after parturition (p.p.), another 78 cows 100 g of a humic acid drug (HS-FP) or 50 g of humic acid raw material (HS-RS) were administered orally in the same period and dexamethasone-21-isonicotinate (DEXA21) was applied intramuscularly to another 78 cows on the first day p.p. in a dose of 0.02 mg/kg body weight. 78 untreated cows were used as control group. The impact of these administrations on health, performance and metabolism has been
measured by clinical examinations and blood tests on 14. day a.p., on 3. and 28. day p.p. (Leukocytes, free fatty acids [ FFS ], bilirubin, beta-0H-butyrate [BHB] , glucose, cholesterol, creatine kinase [CK], aspartate aminotransferase [AST], glutamate dehydrogenase [GLDH], gamma glutaryl transferase [GGT], protein, albumin, Mg, Fe, Ca, inorganic phosphate [Pi] , Na, K) and was verified by detection of health status, milk yield and fertility.
Results: The different prophylactic administrations had no significant effect on fertility and health parameters. The absolute and fat- corrected milk yields also showed no statistically reliable differences between experimental groups and control group. Milk protein content in C3 28 days p.p. and milk fat content in DEXA21 and C3 100 days p.p. were significantly increased. Blood control results showed mainly on 3. and 28. day p.p. important differences in metabolic parameters, such as glucose, cholesterol, bilirubin, protein, albumin, Ca, Fe and CK, which are statistically secured. A single dose of dexamethasone-21-
isonicotinate on first day p.p. had the best effect on liver and energy
metabolism. Three days p.p. glucose, bilirubin, cholesterol, protein, Ca and Fe concentrations performed significantly better in DEXA21 group compared both to control group and all other treatment groups. For albumin and Na concentrations and CK activity that was true with respect to control and C3 group. The use of a humic acid drug, humic acid raw material and ammonium propionate mixed with propylene glycol had positive impact on performance and metabolism compared with control group too, but could be statistically secured in only a few cases.
Conclusions: The application of dexamethasone-21-isonicotinate at the first day p.p. significantly stabilizes metabolism in cows after parturition. Similar effects on milk yield and fertility as well as morbidity could not be observed. For humic acid drug, humic acid raw material and ammonium propionate mixed with propylene glycol such effects tended to be recognizable, but cannot be statistically secured. Metabolism can be stabilized in short term stress situations with dexamethasone-21-isonicotinate, general care and feeding must be analyzed and deficiencies have to be eliminated.:Inhaltsverzeichnis
Inhaltsverzeichnis .I
Abkürzungsverzeichnis IV
1 Einleitung .......................................................................................... 1
2 Literaturübersicht ............................................................................. 3
2.1 Stoffwechsel der Milchkuh im geburtsnahen Zeitraum ....................... 3
2.2 Bovine Ketose .................................................................................... 5
2.3 Fettmobilisationssyndrom ................................................................... 7
2.4 Möglichkeiten der Stabilisierung des Stoffwechsels der Milchkuh im
geburtsnahen Zeitraum ...................................................................... 9
2.4.1 Allgemeines zur Stoffwechselstabilisierung ........................................ 9
2.4.2 Energiereiche C3-Verbindungen ...................................................... 11
2.4.2.1 Propionat .......................................................................................... 12
2.4.2.2 Propylenglykol .................................................................................. 14
2.4.2.3 Ammoniumpropionat-Propylenglykol-Gemisch ................................ 15
2.4.3 Huminsäuren .................................................................................... 16
2.4.3.1 Einsatz, Vorkommen, Aufbau ........................................................... 16
2.4.3.2 Effekte .............................................................................................. 16
2.4.3.3 Wirkungsweise im Organismus ........................................................ 17
2.4.3.4 Anwendungen in der Veterinärmedizin ............................................. 18
2.4.3.5 Huminsäurenpräparate ..................................................................... 20
2.4.4 Glukokortikoide................................................................................. 21
2.4.4.1 Aufbau .............................................................................................. 21
2.4.4.2 Wirkungsweise ................................................................................. 21
2.4.4.3 Effekte .............................................................................................. 22
2.4.4.4 Dexamethason-21-isonicotinat ......................................................... 25
3 Tiere, Material und Methoden ........................................................ 27
3.1 Untersuchte Tiere, Betrieb, Fütterung .............................................. 27
3.2 Versuchsanordnung, Gruppeneinteilung .......................................... 28
3.3 Entnahme, Aufbereitung und Aufbewahrung der Blutproben ........... 30
3.4 Bestimmung der Blutparameter, Referenzbereiche ......................... 31
3.4.1 Bestimmung der Leistungs-, Gesundheits- und
Fruchtbarkeitsparameter .................................................................. 33
3.5 Statistische Prüfung der ermittelten Daten ....................................... 35
4 Ergebnisse ...................................................................................... 36
4.1 Methodische Aspekte ....................................................................... 36
4.1.1 Wertung der Untersuchungsergebnisse kranker und selektierter
Kühe ................................................................................................ 36
4.1.2 Akzeptanz der verabreichten Futterzusatzstoffe .............................. 37
4.2 Klinische Befunde ............................................................................. 38
4.3 Leistungsparameter .......................................................................... 41
4.3.1 Milchleistung .................................................................................... 41
4.3.2 Fruchtbarkeit .................................................................................... 44
4.4 Labordiagnostische Parameter......................................................... 45
4.4.1 Energie-Fett-Leberstoffwechsel ....................................................... 45
4.4.1.1 Glucose ............................................................................................ 45
4.4.1.2 Cholesterol ....................................................................................... 47
4.4.1.3 Bilirubin ............................................................................................ 48
4.4.1.4 Beta-Hydroxy-Butyrat ....................................................................... 49
4.4.1.5 Freie Fettsäuren ............................................................................... 50
4.4.1.6 Aspartat-Amino-Transferase ............................................................ 51
4.4.1.7 Gamma-Glutamyl-Transferase ......................................................... 52
4.4.1.8 Glutamat-Dehydrogenase ................................................................ 53
4.4.2 Eiweißstoffwechsel ........................................................................... 54
4.4.2.1 Gesamtprotein .................................................................................. 54
4.4.2.2 Albumin ............................................................................................ 55
4.4.3 Mineralstoff- und Spurenelementstoffwechsel .................................. 56
4.4.3.1 Natrium ............................................................................................. 56
4.4.3.2 Kalium .............................................................................................. 57
4.4.3.3 Calcium ............................................................................................ 58
4.4.3.4 anorganisches Phosphat .................................................................. 59
4.4.3.5 Magnesium ....................................................................................... 60
4.4.3.6 Eisen ................................................................................................ 61
4.4.4 Muskelstoffwechsel .......................................................................... 62
4.4.4.1 Kreatinkinase ................................................................................... 62
4.4.5 Leukozyten ....................................................................................... 63
5 Diskussion ...................................................................................... 64
5.1 Klinische Parameter ......................................................................... 64
5.1.1 Morbidität ......................................................................................... 64
5.1.2 Milchleistung .................................................................................... 67
5.1.3 Fruchtbarkeit .................................................................................... 70
5.2 Klinisch-chemische Parameter, Stoffwechsel ................................... 71
5.2.1 Wirkung von Huminsäuren auf den Stoffwechsel ............................. 71
5.2.2 Wirkung einer energiereichen C3-Verbindung auf den Stoffwechsel 71
5.2.3 Wirkung von Dexamethason-21-isonicotinat auf den Stoffwechsel .. 74
6 Zusammenfassung ......................................................................... 83
7 Summary ......................................................................................... 85
8 Literaturverzeichnis ....................................................................... 87
|
84 |
Investigation of the Complexation and the Migration Behavior of Actinides and Non-Radioactive Substances with Humic Acids under Geogenic Conditions - Complexation of Humic Acids with Actindies in the Oxidation State IV Th, U, NpBernhard, Gert, Schmeide, Katja, Sachs, Susanne, Heise, Karl-Heinz, Geipel, Gerhard, Mibus, Jens, Krepelova, Adela, Brendler, Vinzenz January 2004 (has links)
Objective of this project was the study of basic interaction and migration processes of actinides in the environment in presence of humic acids (HA). To obtain more basic knowledge on these interaction processes synthetic HA with specific functional properties as well as 14C-labeled HA were synthesized and applied in comparison to the natural HA Aldrich. One focus of the work was on the synthesis of HA with distinct redox functionalities. The obtained synthetic products that are characterized by significantly higher Fe(III) redox capacities than Aldrich HA were applied to study the redox properties of HA and the redox stability of U(VI) humate complexes. It was confirmed that phenolic OH groups play an important role for the redox properties of HA. However, the results indicate that there are also other processes than the single oxidation of phenolic OH groups and/or other functional groups contributing to the redox behavior of HA. A first direct-spectroscopic proof for the reduction of U(VI) by synthetic HA with distinct redox functionality was obtained. The complexation behavior of synthetic and natural HA with actinides (Th, Np, Pu) was studied. Structural parameters of Pu(III), Th(IV), Np(IV) and Np(V) humates were determined by X-ray absorption spectroscopy (XAS). The results show that carboxylate groups dominate the interaction between HA and actinide ions. These are predominant monodentately bound. The influence of phenolic OH groups on the Np(V) complexation by HA was studied with modified HA (blocked phenolic OH groups). The blocking of phenolic OH groups induces a decrease of the number of maximal available complexing sites of HA, whereas complex stability constant and Np(V) near-neighbor surrounding are not affected. The effects of HA on the sorption and migration behavior of actinides was studied in batch and column experiments. Th(IV) sorption onto quartz and Np(V) sorption onto granite and its mineral constituents are affected by the pH value and the presence of HA. HA exhibits a significant influence on the transport of U(IV) and U(VI) in a laboratory quartz sand system. In order to provide the basis for a more reliable modeling of the actinide transport, the metal ion complexation with HA has to be integrated into existing geochemical speciation codes. Within this project the metal ion charge neutralization model was embedded into the geochemical modeling code EQ3/6. In addition to that, a digital data base was developed which covers HA complexation data basing on the charge neutralization model.
|
85 |
Konformace a molekulární organizace huminových kyselin ve vodných roztocích / Conformation and molecular organization of humic acids in aqueous solutionsVěžníková, Kateřina January 2012 (has links)
This diploma thesis deals with the conformation and molecular organization of humic acids in aqueous solutions. Humic substances have heterogeneous and polydisperse nature, therefore their secondary chemical structure has not yet been defined properly, neither has their conformational arrangement. The conformation of humic substances in the solutions is mainly stabilized by weak disperse forces, such as Van der Waals, -, CH- interactions and hydrogen bonds. Humic substances in the solutions tend to form aggregates that are held together mostly by the intermolecular hydrophobic interactions. Concentration series of humic acids were prepared in three different mediums of constant ionic strength: NaOH and NaCl (prepared either by neutralization NaOH by HCl or direct dilution by solution of NaCl). Several analytical methods have been used to determine conformation and molecular organization of humic acids: potentiometric determination of pH, direct conductometry, ultraviolet and visible spectroscopy, density measurement, dynamic light scattering, laser Doppler velocimetry and high resolution ultrasound spectrometry. It was confirmed that the conformation and molecular organization of humic acids in aqueous solutions depend not only on pH of medium, but they also depend on chemical nature and concentration with the same pH. Results showed that hydrodynamic diameter of particles is significantly increasing in NaCl medium prepared by neutralization NaOH by HCl, particularly at low concentrations, which corresponds to higher values of zeta potential obtained. Concentration dependencies of ultrasonic velocity and compressibility also indicate the changes in conformation and molecular organization corresponding with results from other methods used.
|
86 |
Studium hydrofobních domén v huminových kyselinách / Study of Hydrophobic Domains in Humic AcidsČechlovská, Hana January 2008 (has links)
Fyzikálně-chemická povaha hydrofobních domén huminových kyselin byla studována z několika hledisek. K objasnění významu fluorescenčních spekter byly vzorky podrobeny sekvenční frakcionaci, která pomohla k částečnému objasnění vlivu vodorozpustných složek, volných a vázaných lipidů na optické vlastnosti huminových kyselin. Výsledky naznačily, že fluorescenční píky tradičně přiřazované superpozici jednotlivých struktur jsou spíše důsledkem agregačních vlastností huminových molekul tvořících vlivem hydrofobního efektu zdánlivě vysoce aromatické struktury. Dále pak bylo zjištěno, že na optických vlastnostech huminových kyselin mají podíl i molekuly, které nemají primárně fluoroforní nebo chromoforní vlastnosti. Tento pohled je v souladu s teorií supramolekulárního uspořádání huminových kyselin. Dále byly studovány agregace, konformační chování a termodynamická stabilita huminových kyselin pomocí metody vysoce rozlišovací ultrazvukové spektroskopie. Bylo prokázáno, že huminové kyseliny mají schopnost agregovat už od velmi nízkých koncentrací (
|
87 |
[pt] ESTUDO DO PROCESSO OXIDATIVO AVANÇADO FZV/H2O2 PARA A PRÉ-OXIDAÇÃO DA MATÉRIA ORGÂNICA NATURAL EM ÁGUAS DE SUPERFÍCIE / [en] ZVI/H2O2 ADVANCED OXIDATIVE PROCESS STUDY FOR PRE-OXIDATION OF NATURAL ORGANIC MATTER IN SURFACE WATERSNAIARA DE OLIVEIRA DOS SANTOS 19 May 2020 (has links)
[pt] A presença de ácidos húmicos (AHs), fração esta representativa da matéria orgânica natural (MON) presente em águas naturais, pode contribuir para a formação de subprodutos de desinfecção (SPDs), como os Trihalometanos (THMs), ao reagirem com o cloro durante a produção de água potável nas estações de tratamento de água (ETAs). Tais subprodutos têm sido amplamente investigados devido a seus efeitos no organismo humano, como por exemplo, o aumento do risco de câncer. Portanto, a remoção deste material orgânico antes da etapa de cloração é necessária para a minimização de tais riscos. O processo de oxidação avançada (POA) baseado em FZV (ferro zero valente) e peróxido de
hidrogênio (H2O2) aplicado como uma etapa pré-oxidativa em ETAs foi proposto e investigado quanto à degradação da matéria orgânica, incluindo sua fração relacionada aos AHs. Cortes de ferro metálico comercial (área superficial de 2,56 cm²) foram aplicados ao processo FZV/H2O2 como fonte de FZV de baixo custo de capital. Experimentos em escala de bancada foram conduzidos com água
natural (amostras coletadas em lago do Regent’s Park e do Rio Tâmisa, localizados em Londres, Reino Unido) e em solução de AH preparada em laboratório. Alterações na absorbância de UV a 254 nm (UV254), na concentração de carbono orgânico dissolvido (COD) e na formação de Trihalometanos (THMs) foram analisadas para avaliar o desempenho do tratamento FZV/H2O2. Análises de caracterização do FZV e seus respectivos produtos de corrosão foram verificados pelas técnicas de OES (Espectroscopia de Emissão Ótica), MEV (Microscopia Eletrônica de Varredura), DRX (Difração de raios-X), XPS (Espectroscopia de Fotoelétrons Excitados por raios X). Concluiu-se que a remoção da matéria orgânica natural foi influenciada pela dosagem de H2O2, pH inicial e número de ciclos de reuso do FZV. A formação de uma camada passiva na superfície do metal FZV a partir de sua oxidação produziu espécies de óxidos/hidróxidos que podem contribuir para a redução na eficiência de reuso do FZV. A formação do THM clorofórmio foi maior quando o processo FZV/H2O2 foi aplicado sob pH inicial 6,5, indicando valores acima do limite máximo permissível pela legislação brasileira. Experimentos visando verificar a eficiência do POA investigado sobre diferentes corpos hídricos (Lago do Regents Park e Rio Tâmisa) mostraram semelhantes resultados de remoção de COD e UV254. Isto indica a viabilidade de aplicação deste processo oxidativo sobre diferentes águas naturais de superfície, possibilitando a mineralização parcial da MON e uma significativa redução de sua estrutura húmica. As melhores condições experimentais a nível do planejamento estatístico obtidas a partir do tratamento em água natural (Regent s Park) foram pH0= 4.5, FZV= 50 g/L e [H2O2]= 100 porcento de excesso da dosagem estequiométrica, alcançando remoções de 51 porcento e 74 porcento para COD e UV254, respectivamente. / [en] The presence of humic acids (HAs), a fraction that represents the natural organic matter (NOM) present in natural waters, can contribute to the formation of disinfection byproducts (DBPs), such as Trihalomethanes (THMs), when reacting with chlorine during the production of drinking water in water treatment plants (WTPs). Such byproducts have been widely investigated due to their effects
on the human organism, such as the increased risk of cancer. Therefore, the removal of this organic material prior to the chlorination step is necessary to minimize such risks. The advanced oxidation process (AOP) based on ZVI (zero valent iron) and hydrogen peroxide (H2O2) applied as a pre-oxidative step in WTPs has been proposed and investigated for the degradation of organic matter, including its HA-related fraction. Commercial metallic iron cuts (surface area of 2.56 cm2) were applied to the FZV/H2O2 process as a source of low capital cost ZVI. Bench-scale experiments were conducted with natural water (samples collected from Regent s Park and Thames River lake, located in London, UK) and laboratory-prepared HA solution. Changes in UV absorbance at 254 nm (UV254), dissolved organic carbon (COD) concentration and THMs formation were analyzed to evaluate the performance of the ZVI/H2O2 treatment. Characterization analyzes of ZVI and their respective corrosion products were verified by OES (Optical Emission Spectroscopy), SEM (Scanning Electron Microscopy), XRD (X-ray Diffraction), XPS (X-ray Excited Spectroscopy) techniques. It was concluded that the removal of natural organic matter was influenced by initial pH, H2O2 dosage, and number of ZVI reuse cycles. The formation of a passive layer on the surface of the ZVI metal from its oxidation has produced oxide/hydroxide species that may contribute to the reduction of ZVI reuse efficiency. The formation of chloroform (i.e. THM) was higher when the ZVI/H2O2 process was applied at initial pH 6.5, indicating values above the maximum limit allowed by the Brazilian legislation. Experiments to verify the efficiency of the investigated AOP on different water bodies (Regent s Park Lake and River Thames) showed similar DOC and UV254 removal results. This indicates the feasibility of applying this oxidative process over different natural surface waters, enabling the partial mineralization of NOM and a significant reduction of its humic structure. The best experimental conditions in the statistical planning obtained from natural water treatment (Regent s Park) were pH0 = 4.5, ZVI= 50 g/L and [H2O2] = 100 percent of stoichiometric excess dosage, reaching 51 percent and 74 percent removals for DOC and UV254, respectively.
|
88 |
Eficiência de uso de 15N-ureia tratada com inibidores de urease em associação com substâncias húmicas pela cultura do milho / Nitrogen use efficiency of 15N-urea treated with urease inhibitors in association with humic substances by maizeRinaldi, Luís Felipe 07 February 2018 (has links)
A ureia (UR) é atualmente o fertilizante nitrogenado mais utilizado na agricultura brasileira. No entanto, quando aplicada na superfície do solo está sujeita a perdas de nitrogênio (N) por volatilização de NH3. Uma das formas de minimizar as perdas de N-NH3 é o tratamento do fertilizante com inibidores de urease. A associação desses compostos com substâncias húmicas (SH), no tratamento da UR poderia aumentar a eficiência de uso dos nutrientes pelas plantas. O objetivo desse trabalho foi avaliar a eficiência de inibidores de urease, associados ou não com SH no revestimento da UR como fonte de N em cobertura para o milho. O experimento foi conduzido em casa de vegetação durante 62 dias em delineamento experimental de blocos ao acaso, com três repetições, no esquema fatorial completo, com UR recoberta três inibidores de urease (0,40% B + 0,15% Cu; 0,64% B; NBPT) e um tratamento adicional sem inibidor (Ausente), três doses de SH (0, 0,6, e 1,2%) e um controle. Os tratamentos com N constaram da aplicação de fonte única do nutriente [CO(15NH2)2] aplicada em faixa e em superfície na dose de 180 mg kg-1 de N no estádio fisiológico V4 das plantas de milho. As plantas foram amostradas nos estádios V8 e VT do milho, respectivamente, aos 52 e 62 dias após a semeadura, quando foram avaliados: biometria de parte aérea, área foliar, biomassa seca de raízes e da parte aérea, caracterização morfológica do sistema radicular, e a eficiência de uso do N-fertilizante (EUN) pelo método do balanço isotópico (15N). Também se quantificou as perdas de N por volatilização de NH3 por meio de coletores semi-estáticos com espuma embebida em H3PO4- para avaliação comparativa entre tratamentos. Embora a concentração mais elevada de ácido bórico na UR (0,64% B) tenha reduzido mais as perdas de NH3 por volatilização em comparação ao 0,40 % B + 0,15 % Cu, isso não resultou em maior eficiência de uso do N-fertilizante pelo milho em VT, que ocorreu somente em V8. Em ambos os estádios, o NBPT apresentou-se como melhor inibidor de urease na ausência de SH. A aplicação de SH não aumentou a EUN pelo milho em V8 ou VT quando associados com 0,40% B + 0,15% Cu, 0,64% B, ou mesmo na UR convencional. Entretanto, quando associado com o NBPT, ocorreu aumento das perdas de NH3 por volatilização e redução na EUN em VT, o que pode ter ocorrido devido ao elevado pH das SH (8,5-9) e ao seu baixo poder tampão. A aplicação da UR convencional ou revestida com inibidores de urease não aumentou a taxa de crescimento ou biomassa seca de raízes e parte aérea do milho em nenhum dos períodos avaliados quando comparado ao controle. Da mesma forma, não foram observadas diferenças expressivas entre tratamentos na caracterização morfológica do sistema radicular em V8 ou VT. A ausência de diferença entre tratamentos pode ser explicada pelo curto período de tempo entre a adubação de cobertura e as avaliações das plantas, à aplicação superficial das fontes recobertas com SH e ao método de irrigação adotado, que impediu que as SH entrassem totalmente em contato com as raízes da planta. Além disso, é possível, também, que a dose de SH empregada tenha sido muito baixa para ser efetiva. / Urea (UR) is the most widely applied nitrogen (N) fertilizer in Brazilian agriculture. However, UR is more prone to ammonia (NH3) volatilization losses than other N sources when surface-applied. One alternative to improve nitrogen use efficiency (NUE) of surface-applied UR is through application of urease inhibitors as coating materials of UR. The association of these composts with humic substances (HS) as UR coating materials may also improve nutrient recovery by plants. The aim of this study was to evaluate the efficiency of urease inhibitors, associated or not with HS, as coating materials of UR as new top-dress N sources for maize. A greenhouse pot trial was carried out over 62 days with maize (Zea mays L.), in a completely randomized block design, with three replicates in a full factorial design, with UR coated with three urease inhibitors (0,40% B + 0,15% Cu; 0,64% B; NBPT) and one additional treatment without inhibitor, three doses of HS (0, 0.6, and 1.2%), and one control treatment. All treatments imposed had CO(15NH2)2 as N source, application rate of 180 mg kg-1of N, and side-dressing application at the V4 maize growth stage. Maize plants were assessed at V8 and VT growth stages, at 52 and 62 days after sowing, respectively, when it was evaluated: above and below-ground plant dry matter weight; leaf area; root morphological traits (length, surface area, and volume); and fertilizer use efficiency by the 15N balance method. In addition, semi-open static collectors with foam discs previously soaked in H3PO4- were used to quantify comparatively the NH3 volatilized from all treatments. Although the addition of a higher dose of boric acid on UR (0,64% B) promoted lower ammonia losses by volatilization in comparison to 0,40 % B + 0,15 % Cu, it did not result in higher NUE by maize in VT, which occurred at V8. In both growth stages, NBPT presented the best performance as urease inhibitor in the absence of HS. The application of HS did not increase NUE by maize in V8 and VT when associated with 0,40% B + 0,15% Cu, 0,64% B or even conventional UR. However, when added in conjunction with NBPT, it increased ammonia volatilization and reduced NUE in VT which may have occurred due to the high pH of the HS (8.5-9) and low buffering capacity. Moreover, the application of conventional UR or UR treated with HS and urease inhibitors did not increase maize growth rate or shoot/root dry matter weight in comparison to the control treatment at both growth stages. Likewise, there was no major significant differences between treatments on root morphological traits (length, surface area, and volume) at both growth stages assessed. The lack of sizable outcome differences between treatments could be explained by the application of a single N dose, the short period of time between the side-dressing application and assessment of maize plants, and to the surface-application of the HS and method of irrigation which prevented HS to have full contact with maize roots. Furthermore, HS application rate may have been too low to be effective.
|
89 |
Effects of biostimulators on growth and physiological reactions of vegetablesShevchenko, Yaroslav 13 January 2010 (has links)
Biotische und abiotische Stressfaktoren mindern die Quantität und die Qualität landwirtschaftlicher Erzeugnisse. Sogar die kontrollierten Wachstumsbedingungen eines Gewächshauses tragen nur bedingt zur Minderung der schädlichen Auswirkungen von suboptimalen Wachstumsfaktoren bei. Die negativen Effekte, die durch die Entstehung suboptimaler Wachstumsbedingungen auftreten können, manifestieren sich oft erst nach geraumer Zeit. Aus diesem Grund ist es wichtig, Maßnahmen zu treffen, die diesen negativen Auswirkungen entgegenwirken und eine nachhaltige Produktion von Obst und Gemüse sichern. Um die Widerstandsfähigkeit der Pflanzen gegenüber den zahlreichen Stressfaktoren zu erhöhen, werden sogenannte Pflanzenstärkungsmittel verwendet. Die zahlreichen gärtnerischen Substrate, die bei der Kultivierung von Obst und Gemüse heutzutage unentbehrlich geworden sind, besitzen verschiedene chemische und physikalische Eigenschaften. Diese Eigenschaften unterliegen dem ständigen Einfluss von verschiedenen Faktoren, insbesondere dem Pflanzenwachstum. Anderseits beeinflussen gärtnerische Substrate die Entwicklung der Pflanzen. Die Fähigkeit eines Substrates zur Wasserhaltung, sowie zur Gewährleistung einer optimalen Versorgung mit pflanzlichen Nährstoffen während der kritischen Wachstumsperioden der Pflanzen kann die Produktivität der gärtnerischen Kulturen stark beeinflussen. Dynamische Veränderungen der Substrateigenschaften während des Pflanzenwachstums und Änderungen in physiologischen Reaktionen der gärtnerischen Pflanzen können als System betrachtet werden, und als System können sie, zwecks Optimierung der pflanzlichen Systeme, beeinflusst werden. Diese Einflussnahme kann durch Verwendung von Pflanzenstärkungsmitteln verschiedener Herkunft erreicht werden. In der Fachliteratur wird häufig über Pflanzenstärkungsmittel diskutiert. Dabei wird sehr oft außer Acht gelassen, dass jedes Pflanzenstärkungsmittel ein eigenes Wirkungsspektrum besitzt. Die Breite des Wirkungsspektrums eines Pflanzenstärkungsmittels ist begrenzt, weshalb die positiven Effekte des verwendeten Mittels häufig geringer ausfallen können als erwartet. Die Arbeitshypothese dieser Arbeit belegt, dass durch die Kombination verschiedener bioaktiver Stoffe mit Pflanzenstärkungsmitteln dieses Wirkungsspektrum erweitert werden kann. Aus diesen Zusammenhängen leitet sich das Interesse an Kombinationen verschiedener Pflanzenstärkungsmittel sowie anderer bioaktiver Stoffe ab. Diese Arbeit untersucht die biologischen Effekte verschiedener Kombinationen von bioaktiven Stoffen und Pflanzenstärkungsmitteln zur Stabilisierung pflanzlicher Systeme. Als bioaktive Stoffe werden in dieser Arbeit Laktate und Humate bezeichnet, wobei Mikroorganismen als Pflanzenstärkungsmittel eingesetzt wurden. Die Ergebnisse dieser Arbeit zeigen, dass ein kombinierter Einsatz von Mikroorganismen, Humaten und Laktaten zum Einen zum Erhalt der chemischen und physikalischen Eigenschaften gärtnerischer Substrate, zum Anderen zur Stabilisierung der Pflanzen gegenüber suboptimalen Wachstumsfaktoren beiträgt. Die Anwendung der Kombination von allen drei Komponenten auf Versuchsvarianten mit Gewächshausgurken als Modellpflanze zeigte, dass die Pflanzenproduktivität bei diesen Varianten am höchsten war. Die physiologischen Reaktionen der Gurkenpflanzen im Versuch mit modellierten Stressfaktoren wurden durch Chlorophyllfluoreszenz ermittelt. Die Ergebnisse zeigten, dass die Pflanzen, die mit allen drei Komponenten behandelt wurden, gegenüber suboptimalen Wachstumsbedingungen resistent sind. Die Resultate dieser Arbeit wurden in einem gärtnerischen Unternehmen approbiert. / Biotic and abiotic stress factors reduce the quality and quantity of the horticultural produce. Even controlled growing conditions of a greenhouse can not reduce all the negative influences of the suboptimal growing factors. The negative effects caused by the suboptimal growing factors manifest themselves only after substantial period of time. That is why it is important to take steps that counter these negative effects and enable sustainable production of fruits and vegetables. To improve the resistance of the plants against different stress factors, the plant strengtheners are applied. The horticultural substrates, which are used for cultivation of the fruits and vegetables, have become unalienable and possess the range of different physical and chemical properties. These properties are subjected to constant influence of different biotic and abiotic factors; especially those resulted from the plant growth itself. On the other hand, the substrates influence the growth of the horticultural plants. The water holding capacity of the substrate and its capacity to provide plants with nutrient elements during the critical vegetation periods can influence the productivity of the plant system. Dynamic changes of the substrate properties during the plant growth and changes in physiological reactions of horticultural plants can be viewed as a system, and as the system it can be influenced for the purposes of its optimization. This influence can be achieved by application of different plant strengtheners of different origin. The role of the plant strengthening agents is being discussed in the literature. The missing point in the discussion however is the fact that the plant strengtheners have their own activity spectrum. The activity spectrum of the bioactive substance is limited and expected positive effects of its application can be lesser that expected. The hypothesis of the thesis is based on the premise that combination of the different bioactive substances and plant strengthening agents can increase the activity spectrum. These interrelations cause an interest on combinations of different plant strengtheners and others bioactive substances. This thesis investigates biological effects different combinations of bioactive substances and plant strengtheners with an aim to stabilize plant systems. In this work, lactates and humates are described as bioactive compounds, whereas microorganisms are perceived as plant strengtheners. The results of this work show that the combined application of microorganisms, humates and lactates sustain chemical and physical properties of the horticultural substrates and at the same time stabilize plant systems under the suboptimal growing factors. The experiment variants with greenhouse cucumbers as a model plant treated with all three components showed the highest productivity. Physiological reactions of the cucumber plants were investigated through measurement of the chlorophyll fluorescence of the cucumber leaves in the experiments with modeled suboptimal growing factors. The results showed that the plants treated with a combination of humates lactates and microorganism were more resistant to suboptimal growing conditions than the plants on variants without treatment. The results of this work were approbated at a horticultural enterprise.
|
90 |
Oxidation Processes: Experimental Study and Theoretical InvestigationsAl Ananzeh, Nada 29 April 2004 (has links)
Oxidation reactions are of prime importance at an industrial level and correspond to a huge market. Oxidation reactions are widely practiced in industry and are thoroughly studied in academic and industrial laboratories. Achievements in oxidation process resulted in the development of many new selective oxidation processes. Environmental protection also relies mainly on oxidation reactions. Remarkable results obtained in this field contributed to promote the social image of chemistry which gradually changes from being the enemy of nature to becoming its friend and savior. This study dealt with two aspects regarding oxidation process. The first aspect represented an experimental study for the partial oxidation of benzene to phenol using Pd membrane in the gaseous phase. The second part was a theoretical study for some of the advanced oxidation process (AOPs) which are applied for contaminant destructions in polluted waters. Niwa and coworkers reported a one step catalytic process to convert benzene to phenol using Pd membrane. According to their work, this technique will produce a higher yield than current cumene and nitrous oxide based industrial routes to phenol. A similar system to produce phenol from benzene in one step was studied in this work. Results at low conversion of benzene to phenol were obtained with a different selectivity from the reported work. High conversion to phenol was not obtained using the same arrangement as the reported one. High conversion to phenol was obtained using a scheme different from the one reported by Niwa et al1. It was found that producing phenol from benzene is not related to Pd-membrane since phenol was produced by passing all reactants over a Pd catalyst. Within the studied experimental conditions, formation of phenol was related to Pd catalyst since Pt catalyst was not capable of activating benzene to produce phenol. Other evidence was the result of a blank experiment, where no catalyst was used. From this experiment no phenol was produced. A kinetic model for the advanced oxidation process using ultraviolet light and hydrogen peroxide (UV/H2O2) in a completely mixed batch reactor has been tested for the destruction of humic acid in aqueous solutions. Known elementary chemical reactions with the corresponding rate constants were taken from the literature and used in this model. Photochemical reaction parameters of hydrogen peroxide and humic acid were also taken from the literature. Humic acid was assumed to be mainly destroyed by direct photolysis and radicals. The rate constant for the HA- reaction was optimized from range of values in the literature. Other fitted parameters were the rate constant of direct photolysis of hydrogen peroxide and humic acid. A series of reactions were proposed for formation of organic byproducts of humic acid destruction by direct photolysis and radicals. The corresponding rate constants were optimized based on the best fit within the range of available published data. This model doesn't assume the net formation of free radicals species is zero. The model was verified by predicting the degradation of HA and H2O2 for experimental data taken from the literature. The kinetic model predicted the effect of initial HA and H2O2 concentration on the process performance regarding the residual fraction of hydrogen peroxide and nonpurgeable dissolved organic carbon (NPDOC). The kinetic model was used to study the effect of the presence of carbonate/bicarbonate on the rate of degradation of NPDOC using hydrogen peroxide and UV (H2O2/UV) oxidation. Experimental data taken from literature were used to test the kinetic model in the presence of carbonate/bicarbonate at different concentrations. The kinetic model was able to describe the trend of the experimental data. The kinetic model simulations, along with the experimental data for the conditions in this work, showed a retardation effect on the rate of degradation of NPDOC due to the presence of bicarbonate and carbonate. This effect was attributed to the scavenging of the hydroxyl radicals by carbonate and bicarbonate. A kinetic model for the degradation of methyl tert-butyl ether (MTBE) in a batch reactor applying Fenton's reagent (FeII/ H2O2) and Fenton-like reagent (Feo/ H2O2) in aqueous solutions was proposed. All of the rate and equilibrium constants for hydrogen peroxide chemistry in aqueous solutions were taken from the literature. Rate and equilibrium constants for ferric and ferrous ions reactions in this model were taken from the reported values in the literature, except for the rate constant for the reaction of ferric ions with hydrogen peroxide where it was fitted within the range that was reported in the literature. Rate constant for iron dissolution was also a fitted parameter. The mechanism of MTBE degradation by the hydroxyl radicals was proposed based on literature studies. The kinetic model was tested on available experimental data from the literature which involved the use of Fenton's reagent and Fenton-like reagent for MTBE degradation. The degradation of MTBE in Fenton's reagent work was characterized to proceed by two stages, a fast one which involved the reaction of ferrous ions with hydrogen peroxide (FeII/H2O2 stage) and another, relatively, slower stage which involved the reaction of ferric ions with hydrogen peroxide (FeIII/H2O2 stage). The experimental data of MTBE degradation in the FeII/H2O2 stage were not sufficient to validate the model, however the model predictions of MTBE degradation in the FeIII/H2O2 stage was good. Also, the model was able to predict the byproducts formation from MTBE degradation and their degradation especially methyl acetate, and tert-butyl alcohol. The effect of each proposed reaction on MTBE degradation and the byproducts formation and degradation was elucidated based on a sensitivity analysis. The kinetic model predicted the degradation of MTBE for Fenton-like reagent for the tested experimental data. Matlab (R13) was used to solve the set of ordinary nonlinear stiff differential equations that described rate of species concentrations in each advanced oxidation kinetic model. Niwa, S. et al., Science 295 (2002) 105
|
Page generated in 0.0309 seconds