• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • Tagged with
  • 14
  • 14
  • 14
  • 10
  • 10
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Parallel JPEG Processing with a Hardware Accelerated DSP Processor / Parallell JPEG-behandling med en hårdvaruaccelerarad DSP processor

Andersson, Mikael, Karlström, Per January 2004 (has links)
This thesis describes the design of fast JPEG processing accelerators for a DSP processor. Certain computation tasks are moved from the DSP processor to hardware accelerators. The accelerators are slave co processing machines and are controlled via a new instruction set. The clock cycle and power consumption is reduced by utilizing the custom built hardware. The hardware can perform the tasks in fewer clock cycles and several tasks can run in parallel. This will reduce the total number of clock cycles needed. First a decoder and an encoder were implemented in DSP assembler. The cycle consumption of the parts was measured and from this the hardware/software partitioning was done. Behavioral models of the accelerators were then written in C++ and the assembly code was modified to work with the new hardware. Finally, the accelerators were implemented using Verilog. Extension of the accelerator instructions was given following a custom design flow.
12

Design of Single Scalar DSP based H.264/AVC Decoder

Tiejun Hu, Di Wu January 2005 (has links)
H.264/AVC is a new video compression standard designed for future broadband network. Compared with former video coding standards such as MPEG-2 and MPEG-4 part 2, it saves up to 40% in bit rate and provides important characteristics such as error resilience, stream switching etc. However, the improvement in performance also introduces increase in computational complexity, which requires more powerful hardware. At the same time, there are several image and video coding standards currently used such as JPEG and MPEG-4. Although ASIC design meets the performance requirement, it lacks flexibility for heterogeneous standards. Hence reconfigurable DSP processor is more suitable for media processing since it provides both real-time performance and flexibility. Currently there are several single scalar DSP processors in the market. Compare to media processor, which is generally SIMD or VLIW, single scalar DSP is cheaper and has smaller area while its performance for video processing is limited. In this paper, a method to promote the performance of single scalar DSP by attaching hardware accelerators is proposed. And the bottleneck for performance promotion is investigated and the upper limit of acceleration of a certain single scalar DSP for H.264/AVC decoding is presented. Behavioral model of H.264/AVC decoder is realized in pure software during the first step. Although real-time performance cannot be achieved with pure software implementation, computational complexity of different parts is investigated and the critical path in decoding was exposed by analyzing the first design of this software solution. Then both functional acceleration and addressing acceleration were investigated and designed to achieve the performance for real-time decoding using available clock frequency within 200MHz.
13

Fault Tolerant Cryptographic Primitives for Space Applications

Juliato, Marcio January 2011 (has links)
Spacecrafts are extensively used by public and private sectors to support a variety of services. Considering the cost and the strategic importance of these spacecrafts, there has been an increasing demand to utilize strong cryptographic primitives to assure their security. Moreover, it is of utmost importance to consider fault tolerance in their designs due to the harsh environment found in space, while keeping low area and power consumption. The problem of recovering spacecrafts from failures or attacks, and bringing them back to an operational and safe state is crucial for reliability. Despite the recent interest in incorporating on-board security, there is limited research in this area. This research proposes a trusted hardware module approach for recovering the spacecrafts subsystems and their cryptographic capabilities after an attack or a major failure has happened. The proposed fault tolerant trusted modules are capable of performing platform restoration as well as recovering the cryptographic capabilities of the spacecraft. This research also proposes efficient fault tolerant architectures for the secure hash (SHA-2) and message authentication code (HMAC) algorithms. The proposed architectures are the first in the literature to detect and correct errors by using Hamming codes to protect the main registers. Furthermore, a quantitative analysis of the probability of failure of the proposed fault tolerance mechanisms is introduced. Based upon an extensive set of experimental results along with probability of failure analysis, it was possible to show that the proposed fault tolerant scheme based on information redundancy leads to a better implementation and provides better SEU resistance than the traditional Triple Modular Redundancy (TMR). The fault tolerant cryptographic primitives introduced in this research are of crucial importance for the implementation of on-board security in spacecrafts.
14

Fault Tolerant Cryptographic Primitives for Space Applications

Juliato, Marcio January 2011 (has links)
Spacecrafts are extensively used by public and private sectors to support a variety of services. Considering the cost and the strategic importance of these spacecrafts, there has been an increasing demand to utilize strong cryptographic primitives to assure their security. Moreover, it is of utmost importance to consider fault tolerance in their designs due to the harsh environment found in space, while keeping low area and power consumption. The problem of recovering spacecrafts from failures or attacks, and bringing them back to an operational and safe state is crucial for reliability. Despite the recent interest in incorporating on-board security, there is limited research in this area. This research proposes a trusted hardware module approach for recovering the spacecrafts subsystems and their cryptographic capabilities after an attack or a major failure has happened. The proposed fault tolerant trusted modules are capable of performing platform restoration as well as recovering the cryptographic capabilities of the spacecraft. This research also proposes efficient fault tolerant architectures for the secure hash (SHA-2) and message authentication code (HMAC) algorithms. The proposed architectures are the first in the literature to detect and correct errors by using Hamming codes to protect the main registers. Furthermore, a quantitative analysis of the probability of failure of the proposed fault tolerance mechanisms is introduced. Based upon an extensive set of experimental results along with probability of failure analysis, it was possible to show that the proposed fault tolerant scheme based on information redundancy leads to a better implementation and provides better SEU resistance than the traditional Triple Modular Redundancy (TMR). The fault tolerant cryptographic primitives introduced in this research are of crucial importance for the implementation of on-board security in spacecrafts.

Page generated in 0.0938 seconds